Skip to main content

THE SUBOXIC TRANSITION ZONE IN THE BLACK SEA

  • Conference paper
Past and Present Water Column Anoxia

Part of the book series: Nato Science Series: IV: Earth and Environmental Sciences ((NAIV,volume 64))

Abstract

The Black Sea is a classic marine anoxic basin. It has an oxygenated surface layer overlying a sulfide containing (anoxic) deep layer. At the interface between these layers there is a suboxic layer in which both oxygen and sulfide are extremely low and have no perceptible vertical gradients. This condition has evolved because of the superposition of the flux of organic matter which consumes oxygen during respiration on the strong density stratification on the water column. The density stratification is strong because water with high salinity enters the Black Sea from the Bosporus Strait and mixes with overlying cold intermediate layer (CIL) water that forms in the winter on the northwest shelf and in the center of the western and eastern gyres. The rate of CIL formation is also variable over 5 to 10 year periods in response to climate variability on that same time interval. This variability appears to be driven by the North Atlantic Oscillation. This mixture of Bosporus outflow and entrained cold intermediate layer water results in formation the Bosporus Plume which ventilates the layers of the Black Sea deeper than the CIL. New data about the biogeochemical distributions (oxygen, sulfide, nitrate and ammonium) were obtained during R/V Knorr research cruises in 2001 and 2003. The distributions in the upper layers reflect a classic example of the connection between climate forcing, physical regime, chemical fluxes and biological response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrusov N.I. Predvaritelnii otchyot ob uchastii v Chernomorskoi glubomernoi ekspiditsii 1890 g. (Preliminary report on participation in the 1890 Black Sea fathometer expedition) Izvestiya Russkogo Geograficheskogo Obschestva (Proceedings of the Russian Geographical Society 1890; 26(5):398-409.

    Google Scholar 

  2. Basturk O., Saydam C., Salihoglu I. , Eremeeva L.V., Konovalov SK., Stoyanov A., Dimitrov A., Cociasu A., Dorogan L. and Altabet M. Vertical variations in the principle chemical properties of the Black Sea in the autumn of 1991. Journal of Mar Chem 1994; 45:149-65.

    Google Scholar 

  3. Berner R.A. and Canfield D.E. A model for atmospheric oxygen over phanerozoic time. Am J Sci 1989; 289: 333-61.

    Google Scholar 

  4. Bezborodov A.A. and Eremeev V.N. Chernoe more. Zona vzaimodeistviya aerobnikh I anaerobnikh vod. (Black Sea. The oxic/anoxic interface), Sevastopol, MHI ASU, 1993. (in Russian)

    Google Scholar 

  5. Brewer P.G. and Murray J.W. Carbon, nitrogen and phosphorus in the Black Sea. Deep-Sea Res 1973; 20:803-18.

    Google Scholar 

  6. Broenkow W.W. and Cline J.D. Colorimetric determination of dissolved oxygen at low concentrations. Limnol Oceanogr 1969; 14(3):450-54.

    Article  Google Scholar 

  7. Buesseler K.O., Livingston H.D. and Casso S.A. Mixing between oxic and anoxic waters of the Black Sea as traced by Chernobyl cesium isotopes. Deep-Sea Res 1991; 38:725-46.

    Google Scholar 

  8. Buesseler K.O., Livingston H.D., Ivanov L. and Romanov A. Stability of the oxic-anoxic interface in the Black Sea. Deep-Sea Res I 1994; 41(2):283-96.

    Google Scholar 

  9. Caspers H. “Black Sea and Sea of Azov”. In Treatise on marine ecology and paleoecology. Hedgpeth J.W. ed., Geological Society of America Memoirs, 1957.

    Google Scholar 

  10. Codispoti L.A., Friederich G.E., Murray J.W. and Sakamoto C.M. Chemical variability in the Black Sea: implication of continuous vertical profiles that penetrated oxic/anoxic interface. Deep-Sea Res 1991; 38(2):691-710.

    Google Scholar 

  11. Debol'skaya E.I. and Yakushev E.V. The role of suspended manganese in hydrogen sulfide oxidation in the Black Sea redox-zone. Water Resources 2002; 29:72-77. (In Russian)

    Article  Google Scholar 

  12. Dyrssen D. Metal complex formation in sulphidic seawater. Mar Chem 1985; 15:285-93.

    Article  Google Scholar 

  13. Dyrssen D., Haraldsson C., Westerlund S. and Aren K. Report on the Chemistry of seawater, XXXII. Department of Analytical and Marine Chemistry, Chalmers University of Technology and university of Goteborg, Goteborg, Sweden, 1986.

    Google Scholar 

  14. Fonselius S.H. "Phosphorus in the Black Sea." In The Black Sea–Geology, Chemistry and Biology. Degens E.J., Koss D.A. eds., Amer Ass of Petrol Geologists Tulsa, 1974.

    Google Scholar 

  15. Fuchsman C.A. and Murray J.W. Nitrogen species concentration and natural stable isotope profiles of the Black Sea. Deep-Sea Res Pt II, submitted.

    Google Scholar 

  16. Goyet C., Bradshaw A.L. and Brewer P.G. The carbonate system in the Black Sea. Deep-Sea Res 1991; 38:1049-68.

    Google Scholar 

  17. Gregg M.C. and Yakushev E. Surface ventilation of the Black Sea's cold intermediate layer in the middle of the western gyre. Geophys Res Lett 2005; 32:L03604, doi:10.1029/2004GL021580.

    Google Scholar 

  18. Gunnerson C.G. and Ozturgut E. “The Bosporus”. In The Black Sea-geology, chemistry and biology. Degens E.T. and Ross D.A. eds., AAPG, Memoir 20, 1974.

    Google Scholar 

  19. Holland H.D. The Chemical Evolution of the Atmosphere and Oceans. Princeton Univ. Press, Princeton, 1984.

    Google Scholar 

  20. Humborg C., Ittekkot V., Cociasu A. and v.Bodungen B. Effect of Danube River dam on Black Sea biogeochemistry. Nature 1997; 386:385-88.

    Article  Google Scholar 

  21. Ivanov L.I., Konovalov S.K., Belokopytov V. and Ozsoy E. “Regional peculiarities of physical and chemical responses to changes in external conditions within the Black Sea pycnocline: cooling phase.” In NATO ASI Series. NATO TU-Black Sea project: Ecosystem modeling as a management tool for the Black Sea. Symposium on scientific results. Ivanov L. and Oguz T. eds., Kluwer Academic Publishers, The Netherlands, 1998.

    Google Scholar 

  22. Jørgenson B.B., Fossing H., Wirsen C.O. and Jannasch H.W. Sulfide oxidation in the anoxic Black Sea chemocline. Deep-Sea Res 1991; 38:1083-1104.

    Google Scholar 

  23. Karl D.M. and Knauer G.A. Microbial production and particle flux in the upper 350 m of the Black Sea. Deep-Sea Res 1991; 38:921-42.

    Google Scholar 

  24. Konovalov S.K., Tugrul S., Basturk O. and Salihoglu I. “Spatial isopycnal analysis of the main pycnocline chemistry of the Black Sea: Seasonal and interannual variations.” In Sensitivity to change: Black Sea, Baltic Sea and North Sea. Ozsoy E. and Mikaelyan A. eds., Kluwer Academic Publishes, Dordrecht, NATO ASI, 1997.

    Google Scholar 

  25. Konovalov S.K. and Murray J.W. Variations in the chemistry of the Black Sea on a time scale of decades (1960-1995). J Marine Syst 2001; 31:217-43.

    Google Scholar 

  26. Konovalov S.R., Luther G.W. III, Friederich G.E., Nuzzio D.B, Tebo B.M., Murray J.W., Oguz T., Glazer B., Trouwborst R.E., Clement B., Murray K.J. and Romanov A Lateral injection of oxygen with the Bosporus plume-fingers of oxidizing potential in the Black Sea. Limnol Oceanogr 2003; 48:2369-76.

    Article  Google Scholar 

  27. Korotaev G., Oguz T., Nikiforov A. and Koblinksy C. Seasonal, imterannual and mesoscale variability of the Black Sea upper layer circulation derived from altimeter data. J Geophys Res 2003; 108:19-1 to 19-15.

    Article  Google Scholar 

  28. Kuypers M.M.M., Sliekers A.O., Lavik G., Schmid M., Jorgensen B.B., Kuenen J.G., Damsté J.S.S., Strous M. and Jetten M.S.M. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 2003; 422:608-11.

    Article  Google Scholar 

  29. Latif M.A., Özsoy E., Oguz T. and Ünlüata U. (1991) Observations of the Mediterranean infiow into the Black Sea. Deep-Sea Res 1991; 38: S711-S724.

    Google Scholar 

  30. Lee B-S, Bullister J.L., Murray J.W., Sonnerup R.E. Anthropogenic chlorofluorocarbons in the Black sea and the Sea of Marmara. Deep-Sea Res 2002; 49:895-913.

    Google Scholar 

  31. Lewis B.L. and Landing W.M. The biogeochemistry of manganese and iron in the Black Sea. Deep-Sea Res 1991; 38:773-804.

    Google Scholar 

  32. Lukashev Yu.F., Yakushev E.V. “Dissolved oxygen content measurements on the border of the sulfide zone of the Black Sea.” In PACON-99 Symposium. Abstracts, Russian Academy of Sciences, Moscow, Russia, 1999.

    Google Scholar 

  33. Luther G.W. III, Church T.M. and Powell D. Sulfur speciation and possible sulfide oxidation in the water column of the Black Sea. Deep-Sea Res 1991; 38:1121-37.

    Google Scholar 

  34. Millero F.J. The oxidation of H2S in Black Sea waters. Deep-Sea Res 1991; 38:1139-50.

    Google Scholar 

  35. Murray J.W. and Izdar E. The 1988 Black Sea Oceanographic Expedition: Overview and new discoveries. Oceanography 1989; 2:15-21.

    Google Scholar 

  36. Murray J. W., Jannasch H.W., Honjo S., Anderson R.F., Reeburgh W.S., Top Z., Friederich G.E., Codispoti L.A. and Izdar E. Unexpected changes in the oxic/anoxic interface in the Black Sea. Nature 1989; 338:411-13.

    Article  Google Scholar 

  37. Murray J.W., Konovalov S.K., Romanov A., Luther G., Friederich G., Tebo B., Oguz T., Besiktepe S., Tugrul S. and Yakushev E. “R/V Knorr Cruise: New Observations and variations in the structure of the suboxic zone.” In Oceanography of Eastern Mediterranean and Black Sea. Yilmaz A. ed., Tubitak Press, 2003.

    Google Scholar 

  38. Murray J.W. “Hydrographic variability in the Black Sea.” In Black Sea Oceanography, Izdar E. and Murray J.W. eds., Kluwer Academic Publishers, 1991.

    Google Scholar 

  39. Murray J.W., Top Z. and Ozsoy E. Hydrographic properties and ventilation of the Black Sea. Deep-Sea Res 1991; 38:663-89.

    Google Scholar 

  40. Murray J.W., Codispoti L.A. and Friederich G.E. “Oxidation-reduction environments: the suboxic zone in the Black Sea.” In Aquatic Chemistry: Interfacial and Interspecies Processes. Huang C.P., O'Melia C.R. and Morgan J.J. eds., Adv Chem Ser, No. 224, 1995.

    Google Scholar 

  41. Neretin L.N., Volkov I.I., Bottcher M.E. and Grinenko V.A. A sulfur budget for the Black Sea anoxic zone. Deep-Sea Res Pt I 2001; 48:2569-93.

    Google Scholar 

  42. Neuman G. Die absolute Topographie des physikalischen Meeresniveaus und die Oberflächenströmungen des Schwarzen Meeres. Annalen der Hydrographie und Maritimen Meteorologie 1942; 70:265-82.

    Google Scholar 

  43. Oguz T. Role of physical processes controlling oxycline and suboxic layer structures in the Black Sea. Global Biogeochem Cy 2002; 16:3-1 to 3-13.

    Article  Google Scholar 

  44. Oguz T. and Dippner J.W. Regulation of the Black Sea physical and ecosystem structure by climate variability and anthropogenic forcing. Deep-Sea Res Pt II, in press.

    Google Scholar 

  45. Oguz T., Latif M.A., Sur H.I., Ozsoy E. and Unluata U. “On the dynamics of the southern Black Sea.” In Black Sea Oceanography, Izdar E. and Murray J.W. eds., Kluwer Academic Publishers, 1991.

    Google Scholar 

  46. Oguz T., Malanotte-Rizzoli P. and Aubrey D. Wind and thermohaline circulation of the Black Sea driven by yearly mean climatological forcing. J Geophys Res 1995; 100:6845-63.

    Article  Google Scholar 

  47. Oguz T., Ivanov L.I. and Besiktepe S. “Circulation and hydrographic characteristics of the Black Sea during July 1992.” In Ecosystem Modeling as a Management Tool for the Black Sea. Ivanov L.I. and Oguz T. eds., NATO Science Series, Vol. 2, 1998.

    Google Scholar 

  48. Oguz T., Tugrul S., Kideys A.E., Ediger V. and Kubilay N. Physical and biogeochemical characteristics of the Black Sea. Chpt. 33 in The Sea Volume 14. Eds. Robinson A.R. and Brink K.H. Harvard University Press, 2004; 1331-69.

    Google Scholar 

  49. Oguz T., Murray J.W. and Callahan A. Modeling redox cycling across the suboxic-anoxic interface zone in the Black Sea. Deep-Sea Res 2001; 48:761-87.

    Google Scholar 

  50. Overmann J., Cypionka H and Pfennig N. An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 1992; 37:150-55.

    Article  Google Scholar 

  51. Ozsoy E., Unluata U., Top Z. The evolution of Mediterranean water in the Black Sea: interior mixing and material transport by double diffusive intrusions. Prog Oceanogr 1993; 31:275-320.

    Google Scholar 

  52. Peneva E., Stanev E., Belokopytov V. and Le Traon P.Y. Water transport in the Bosporus Strait estimated from hydro-meteorological and altimeter data: seasonal and decadal variability. J Marine Syst 2001; 31:21-33.

    Google Scholar 

  53. Pilskaln C.H. “Biogenic aggregate sedimentation in the Black Sea Basin.” In Black Sea Oceanography, Izdar E. and Murray J.W. eds., Kluwer, 1991.

    Google Scholar 

  54. Repeta D.J., Simpson D.J., Jorgensen B.B. and Jannasch H.W. Evidence of anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the Black Sea. Nature 1989; 342:69-72.

    Article  Google Scholar 

  55. Richards F.A. “Anoxic basins and fjords.” In Chemical Oceanography, Riley J.P. and Skirrow G. eds., Academic Press 1, 1965.

    Google Scholar 

  56. Savenko A. V. Precipitation of phosphate with iron hydroxide forming by mixing of submarine hydrothermal solutions and the sea water (on the base of experimental data). Geochem Int 1995; 9:1383-89.

    Google Scholar 

  57. Saydam C., Tugrul S., Basturk O. and Oguz T. Identification of the oxic/anoxic interface by isopycnal surfaces in the Black Sea. Deep-Sea Res 1993; 40:1405.

    Google Scholar 

  58. Schippers A., Neretin L.N, Lavik G., Leipe T. and Pollehne F. Manganese (II) oxidation driven by lateral oxygen intrusions in the western Black Sea. Geochim Cosmochim Ac 2005; 69:2241-52.

    Article  Google Scholar 

  59. Shaffer G. Phosphorus pumps and shuttles in the Black Sea. Nature 1986; 321:515-17.

    Article  Google Scholar 

  60. Skopintsev B.A. Formirovanie sovemennogo khimicheskogo sostava Chyornogo moray (Formation of the modern chemical composition of the Black Sea), Ed. Hydrometeoizdat, Leningrad, 1975. (In Russian).

    Google Scholar 

  61. Sorokin Yu.I. The bacterial population and the processes of hydrogen sulfide oxidation in the black Sea. Journal du Conseil International Exploration de la Mer 1972; 34:423-54.

    Google Scholar 

  62. Sorokin Y.I. “The Black Sea.” In Ecosystems of the world 26: estuaries and enclosed seas, Ketchum B.H. ed., Amsterdam: Elsevier, 1983.

    Google Scholar 

  63. Sorokin Yu. I. The Black Sea. Ecology and Oceanography. Backhuys Publishers, Leiden, 2002.

    Google Scholar 

  64. Spencer D.W. and Brewer P.G. Vertical advection diffusion and redox potentials as controls on the distribution of manganese and other trace metals dissolved in waters of the Black Sea. J Geophys Res 1971; 76:5877-92.

    Google Scholar 

  65. Spencer D.W., Brewer P.G. and Sachs P.L. Aspects of the distribution and trace element composition of suspended matter in the Black Sea. Geochim Cosmochim Ac 1972; 36:71-86.

    Article  Google Scholar 

  66. Stanev E.V. and Peneva E.L. Regional sea level response to global climatic change: Black Sea examples. Global Planet Change 2002; 32:33-47.

    Google Scholar 

  67. Stanev E.V., Staneva J., Bullister J.L. and Murray J.W. Ventilation of the Black Sea Pycnocline. Parameterization of convection, model simulations and validations against observed chlorofiuorocarbon data. Deep-Sea Res Pt I 2005; 51:2137-69.

    Google Scholar 

  68. Stunzhas P.A. “Fine structure of vertical oxygen distribution in the Black Sea.” In Complex investigation of the Northeastern Black Sea, Zatsepin A.G., Flint M.V. eds., Nauka, Moscow, 2002. (In Russian)

    Google Scholar 

  69. Tebo B.M. Manganese (II) oxidation in the suboxic zone of the Black Sea. Deep-Sea Res 1991; 38:883-906.

    Google Scholar 

  70. Tolmazin D. Changing coastal oceanography of the Black Sea. I. Northwestern shelf. Prog Oceanogr 1985a; 15:217-76.

    Google Scholar 

  71. Tolmazin D. Changing Coastal Oceanography of the Black Sea. II: Mediterranean Effluent. Prog Oceanogr 1985b; 15:277-316.

    Google Scholar 

  72. Tugrul S., Basturk O., Saydam C. and Yilmaz A. Changes in the hydrochemistry of the Black Sea inferred from water density profiles. Nature 1992; 359:137-39.

    Article  Google Scholar 

  73. Ward B.B. and Kilpatrick K.A. “Nitrogen transformations in the oxic layer of permanent anoxic basins: The Black Sea and Cariaco Trench.” In Black Sea Oceanography, Izdar E. and Murray J.W. eds., Kluwer Academic Publishers, 1990.

    Google Scholar 

  74. Yakushev E.V., Lukashev Yu.F., Chasovnikov V.K. and Chzhu V.P. “Modern notion of the vertical hydrochemical structure of the Black Sea redox zone.” In Complex investigation of the Northeastern Black Sea, Zatsepin A.G., Flint M.V. eds., Nauka, Moscow, 2002. (In Russian)

    Google Scholar 

  75. Yao W. and Millero F.J. Adsorption of phosphate on manganese dioxide in seawater. Environ Sci Technol 1996; 30:536-41.

    Article  Google Scholar 

  76. Yilmaz A., Coban-Yildiz Y., Morkoc E. and Bologa A. Surface and mid-water sources of organic carbon by phyto-and chemo-autotrophic production in the Black Sea. Deep-Sea Res Pt II, submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Murray, J., Yakushev, E. (2006). THE SUBOXIC TRANSITION ZONE IN THE BLACK SEA. In: Neretin, L. (eds) Past and Present Water Column Anoxia. Nato Science Series: IV: Earth and Environmental Sciences, vol 64. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4297-3_05

Download citation

Publish with us

Policies and ethics