Conference paper
Part of the Nato Science Series: IV: Earth and Environmental Sciences book series (NAIV, volume 64)


Recent advances in molecular ecological techniques have led to the revelation that sedimentary environments contain molecular signals in the form of DNA sequences: signals that tend to be consistent with the in situ geochemical environment. However, as one moves to more ancient environments, the correlation of molecular signals with the in situ environment becomes more difficult. We have called the pool of molecular information that can be obtained from such ancient environments the ‘Paleome’. This concept is controversial, in part because it demands that the molecular sequences be stable for long periods of time, and in part because the interpretation of such sequences in a geochemical context is often difficult, even for contemporary samples. We review results from a variety of environments, discussing the potential explanations for each, and focusing on the relationship of the molecular signals to the biological history of the sample. In almost every case, while molecular signals were abundant, viable cells were not cultivated. We posit here that the paleome is the genetic record of the biological past, a record that has been preserved on geologic timescales: a record that may well provide us with insights into both the paleoenvironment and the co-evolution of Earth and its biota.


Black Shale Most Probable Number Ocean Drill Program Methane Hydrate Japan Trench 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bada J. L., Wang X. S. and Hamilton H. Preservation of key biomolecules in the fossil record: current knowledge and future challenges. Phil Trans R Soc Lond Bull 1999; 354:77-87.Google Scholar
  2. 2.
    Bale S. J., Goodman K., Rochelle P. A., Marchesi J. R., Fry J. C., Weightman A. J. and Parkes R. J. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 1997; 47:515-21.CrossRefGoogle Scholar
  3. 3.
    Benner S. A., Caraco M. D., Thomson J. M. and Gaucher E. A. Planetary biology-Paleontological, geological, and molecular histories of life. Science 2002; 296:864-68CrossRefGoogle Scholar
  4. 4.
    Boetius A., Ravenschlag K., Schubert C. J., Rickert D., Widdel F., Gieseke A., Amann R., Jorgensen B. B., Witte U. and Pfannkuche O. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 2000; 407:623-26.CrossRefGoogle Scholar
  5. 5.
    Canfield D. E., Raiswell R. and Bottrell S. H. The reactivity of sedimentary iron minerals towards sulfide. Am J Sci 1992; 292:659-83.CrossRefGoogle Scholar
  6. 6.
    Coolen M. J. and Overmann J. Functional exoenzymes as indicators of metabolically active bacteria in 124,000-year-old sapropel layers of the eastern Mediterranean Sea. Appl Environ Microbiol 2000; 66:2589-98.CrossRefGoogle Scholar
  7. 7.
    Coolen M. J., Cypionka H., Sass A. M., Sass H. and Overmann J. Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes. Science 2002; 296:2407-10.CrossRefGoogle Scholar
  8. 8.
    DeLong E. F. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992; 89:5685-89.Google Scholar
  9. 9.
    D'Hondt S., Rutherford S. and Spivack A. J. Metabolic activity of subsurface life in deep-sea sediments. Science 2002; 295:2067-70.CrossRefGoogle Scholar
  10. 10.
    Erba E. Nannofossils and superplumes: The early Aptian “nannoconid crisis”. Paleoceanography 1994; 9:483-501.CrossRefGoogle Scholar
  11. 11.
    Fuhrman J. A., McCallum K. and Davis A. A. Novel major archaebacterial group from marine plankton. Nature 1992; 356:148-49.Google Scholar
  12. 12.
    Fredrickson J. K. and Onstott T. C. “Biogeochemical and geological significance of subsurface microbiology.” In: Subsurface Microbiology and Biogeochemistry, Fredrickson J. K., Fletcher M. eds., Wiley-Liss, Inc., 2001.Google Scholar
  13. 13.
    Hinrichs K. -U., Hayes J. M., Sylva S. P., Brewer P. G. and DeLong E. F. Methane-consuming archaebacteria in marine sediments. Nature 1999; 398:802-05.Google Scholar
  14. 14.
    Inagaki F., Takai K., Komatsu T., Kanamatsu T., Fujioka K. and Horikoshi K. Archaeology of Archaea: geomicrobiological record of Pleistocene thermal events concealed in a deep-sea subseafioor environment. Extremophilies 2001; 5:385-92.Google Scholar
  15. 15.
    Inagaki F., Takai K., Komatsu T., Sakihama Y., Inoue A. and Horikoshi K. Profile of microbial community structures and presence of endolithic microorganisms inside a deep-sea rock. Geomicrobiol J 2002a; 19:535-52.CrossRefGoogle Scholar
  16. 16.
    Inagaki F., Sakihama Y., Inoue A., Kato C. and Horikoshi K. Molecular phylogenetic analyses of reverse-transcribed bacterial rRNA obtained from deep-sea cold seep sediments. Environ Microbiol 2002b; 4:277-86.CrossRefGoogle Scholar
  17. 17.
    Inagaki F., Suzuki M., Takai K., Oida H., Sakamoto T., Aoki K., Nealson K. H. and Horikoshi K. Microbial community associated with geological horizons in coastal sub-seafloor sediments from the Sea of Okhotsk. Appl Environ Microbiol 2003a; 69:7224-35.CrossRefGoogle Scholar
  18. 18.
    Inagaki F., Takai K., Hirayama H., Yamato Y., Nealson K. H. and Horikoshi K. Distribution and phylogenetic diversity of the subsurface microbial community in a Japanese epithermal gold mine. Extremophiles 2003b; 7:307-17.CrossRefGoogle Scholar
  19. 19.
    Inagaki F., Takai K., Kobayashi H., Nealson K. H. and Horikoshi K. Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing epsilon-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 2003c; 53:1801-05.Google Scholar
  20. 20.
    Inagaki F., Okada H., Tsapin A. I. and Nealson K. H. The Paleome: a sedimentary genetic record of past microbial communities. Astrobiology 2005; 5:141-53.CrossRefGoogle Scholar
  21. 21.
    Inagaki F., Takai K., Nealson K. H. and Horikoshi K. Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-Proteobacteria isolated from the Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 2004a; 54:1477-88.CrossRefGoogle Scholar
  22. 22.
    Inagaki F., Tsunogai U., Suzuki M., Kosaka A., Machiyama H., Takai K., Nunoura T., Nealson, K. H. and Horikoshi K. Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, the southern Ryukyu arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Appl Environ Microbiol 2004b; 70:7445-55.CrossRefGoogle Scholar
  23. 23.
    Jan R. L., Wu J., Chaw S. M., Tsal C. W. and Tsen S. D. A novel species of thermoacidophilic archaeon, Sulfolobus yanmingensis sp. nov. Int J. Syst Bacteriol 1999; 49:1809-16.Google Scholar
  24. 24.
    Kamekura M. Diversity of extremely halophilic bacteria. Extremophiles 1998; 2:289-96.Google Scholar
  25. 25.
    Karner N. B., DeLong E. F. and Karl D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 2001; 409:507-10.CrossRefGoogle Scholar
  26. 26.
    Kieft T. L., Fredrickson J. K., Onstott T. C., Gorby Y. A., Kostandarithes H. M., Bailey T. J., Kennedy D. W., Li S. W., Plymale A. E., Spadoni C. M. and Gray M. S. Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl Environ Microbiol 1999; 65:1214-21.Google Scholar
  27. 27.
    Kminek G., Bada J. L., Pogliano K. and Ward J. F. Radiation-dependent limit for the viability of bacterial spores in halite? uid inclusions and on Mars. Radiation Res 2003; 159:722-29.Google Scholar
  28. 28.
    Kormas K. A., Smith D. C., Edgcomb V. and Teske A. Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176). FEMS Microbiol Ecol 2003; 45:115-25.Google Scholar
  29. 29.
    Kuwano T., Ogawa Y., Koizumi I. and Oba T. Calcite-cemented Miocene to Pliocene breccia at the Sanriku Escarpment, Northern Japan Trench. JAMSTEC J Deep Sea Res 1997; 13:573-89. (in Japanese with English abstract)Google Scholar
  30. 30.
    Kuypers M. M. M., Blokker P., Hopmans E. C., Kinkel H., Pancost R. D., Schouten S. and Damste J. S. S. Archaeal remains dominate marine organic matter from the early Albian oceanic anoxic event 1b. Palaeograph Palaeoclimatol Palaeoecol 2002; 185:211-34.Google Scholar
  31. 31.
    Lindahl T. Instability and decay of the primary structure of DNA. Nature 1993; 362:709-15.CrossRefGoogle Scholar
  32. 32.
    Larson R. L. latest pulse of Earth: Evidence for a mid-Cretaceous superplume. Geology 1991; 19:547-50.Google Scholar
  33. 33.
    Matsushima Y. and Aoki M. Temperature and oxygen isotope variations during formation of the Hishikari epithermal gold-silver veins, southern Kyushu, Japan. Ecol Geol 1994; 89:1608-13.Google Scholar
  34. 34.
    McArthur J. V. D., Kovacic D. A. and Smith M. H. Genetic diversity in natural populations of a soil bacterium across a landscape gradient. Proc Natl Acad Sci USA 1988; 85:9621-24.Google Scholar
  35. 35.
    McGenity T. J., Gemmell R. T., Grant W. D. and Stan-Lotter H. Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2000; 2:243-50.CrossRefGoogle Scholar
  36. 36.
    Mikucki J. A., Liu Y., Delwiche M., Colwell F. S. and Boone D. R. Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarines sp. nov. Appl Environ Microbiol 2003; 69:3311-16.CrossRefGoogle Scholar
  37. 37.
    Orphan V. J., Hinrichs K. -U., Ussler III W., Paull C. K., Tayer L. T., Sylva S. P., Hayes, J. M. and DeLong E. F. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 2001a; 67:1922-34.CrossRefGoogle Scholar
  38. 38.
    Orphan V. J., House C. H., Hinrichs K. -U., McKeegan K. D. and DeLong E. F. Methane-consuming archaea revealed by directory coupled isotopic and phylogenetic analysis. Science 2001b; 293:484-87.CrossRefGoogle Scholar
  39. 39.
    Parkes R. J., Cragg B. A. and Wellsbury P. Recent studies on bacterial populations and progresses in subseafioor sediments. Hydrogeol J 2000; 8:11-28.Google Scholar
  40. 40.
    Pedersen K. Microbial life in deep granitic rock. FEMS Microbiol Rev 1997; 20:399-414.CrossRefGoogle Scholar
  41. 41.
    Schlanger S. O. and Jenkyns H. C. Cretaceous oceanic anoxic sediments: Causes and consequences. Geol Mijnbouw 1976; 66:3798-3806.Google Scholar
  42. 42.
    Shipboard scientific party. Explanatory Notes. In D'Hondt S. L., Jorgensen B. B., Miller D. J., et al., Proc ODP Init Repts, 2003; 201:1-103 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, Colleague Station TX 77845-9547, USA.Google Scholar
  43. 43.
    Smith D. C., Spivack A. J., Fisk M. R., Haveman S. A. and Staudigel H., ODP Leg 185 Shipboard Scientific Party. Tracer-based estimates of drilling-induced microbial contamination of deep sea crust. Geomicrobiol J 2000; 17:207-19.Google Scholar
  44. 44.
    Takai K. and Horikoshi K. Genetic diversity of Archaea in deep-sea hydrothermal vent environments. Genetics 1999; 152:1285-97.Google Scholar
  45. 45.
    Takai K., Komatsu T., Inagaki F. and Horikoshi K. Distribution of Archaea in a black smoker chimney structures. Appl Environ Microbiol 2001a; 67:3618-29.Google Scholar
  46. 46.
    Takai K., Moser D. P., DeFlaun M., Onstott T. C. and Fredrickson J. K. Archaeal diversity in waters from deep South African gold mines. Appl Environ Microbiol 2001b; 67:5750-60.Google Scholar
  47. 47.
    Takai K., Moser D. P., Onstott T. C., Spoelstra N., Pfiffner S. M., Dohnalkova A. and Fredrickson J. K. Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South Africa gold mine. Int J Syst vol Microbiol 2001c; 51:1245-56.Google Scholar
  48. 48.
    Takai K., Hirayama H., Sakihama Y., Inagaki F., Yamato Y. and Horikoshi K. Isolation and metabolic characteristics of previously uncultured members of the orders Aquificales in a subsurface gold mine. Appl Environ Microbiol 2002; 68:3046-54.CrossRefGoogle Scholar
  49. 49.
    Takai K., Kobayashi H., Nealson K. H. and Horikoshi K. Sulfurihydrogenobium subterraneum gen. nov., sp. nov., from a subsurface hot aquifer. Int J Syst Evol Microbiol 2003; 53:823-27.Google Scholar
  50. 50.
    Takai K., Oida H., Suzuki Y., Hirayama H., Nakagawa S., Nunoura T., Inagaki F., Nealson K. H. and Horikoshi K. Spatial distribution of marine Crenarchaeota I in the vicinity of deep-sea hydrothermal systems. Appl Environ Microbiol 2004; 70:2404-13.CrossRefGoogle Scholar
  51. 51.
    Wilson P. A. and Norris R. Warm tropical surface and global anoxia during the mid-Cretaceous period. Nature 2001; 412:425-29.Google Scholar
  52. 52.
    Whitman W. B., Coleman D. C. and Wiebe W. J. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 1998; 95:6578-83.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Subground Animalcule Retrieval (SUGAR) Project, Extremobiosphere Research CenterJapan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan
  2. 2.Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations