Skip to main content

PATTERN AND PROCESS IN SAVANNA ECOSYSTEMS

  • Chapter
Dryland Ecohydrology

Abstract

The spatial pattern of vegetation is both a cause and effect of variation in resource availability in semiarid ecosystems. At landscape to regional scales, climatic and geologic constraints on soil moisture and nutrient availability are primary determinants of vegetation structural pattern in semiarid ecosystems. Similarly, at local to landscape scales, the patchy vegetation structural mosaic serves to redistribute the availability of soil moisture and nutrients in ways that have important consequences for structural dynamics and community composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Archer, S., C. Scifres, C. R. Bassham and R. Maggio (1988). Autogenic succession in a subtropical savanna: Conversion of grassland to thorn woodland. Ecological Monographs 58(2): 111–127.

    Google Scholar 

  • Austin, M. P. (1985). Continuum concept, ordination methods, and niche theory. Annual Review of Ecology and Systematics 16: 38–61.

    Article  Google Scholar 

  • Barot, S., J. Gignoux and J. C. Menaut (1999). Demography of a savanna palm tree: Predictions from comprehensive spatial pattern analyses. Ecology 80(6): 1987–2005.

    Google Scholar 

  • Beals, E. W. (1968). Spatial pattern of shrubs on a desert plain in Ethiopia. Ecology 49(4): 744–746.

    Google Scholar 

  • Belsky, A. J., R. G. Amundson, J. M. Duxbury, S. J. Riha, A. R. Ali and S. M. Mwonga (1989). The effects of trees on their physical, chemical and biological environments in a semi-arid savanna in Kenya. Journal of Applied Ecology 26(3): 1005–1024.

    Google Scholar 

  • Belsky, A. J., S. M. Mwonga, R. G. Amundson, J. M. Duxbury and A. R. Ali (1993). Comparative effects of isolated trees on their undercanopy environments in high and low-rainfall savannas. Journal of Applied Ecology 30(1): 143–155.

    Google Scholar 

  • Bian, L. and R. Butler (1999). Comparing effects of aggrgation methods on statistical and spatial properties of simulated spatial data. Phtogrammetric Engineering and Remote Sensing 65(1): 73–84.

    Google Scholar 

  • Bolker, B. M. and S. W. Pacala (1999). Spatial moment equations for plant competition: Understanding spatial strategies and the advantages of short dispersal. American Naturalist 153(6): 575–602.

    Google Scholar 

  • Boone, R. B., M. B. Coughenour, K. A. Galvin and J. E. Ellis (2002). Addressing management questions for Ngorongoro Conservation Area, Tanzania, using the SAVANNA modelling system. African Journal of Ecology 40(2): 138–150.

    Article  Google Scholar 

  • Breshears, D.D. and F.J. Barnes (1999). Interrelationships between plant functional types and soil moisture heterogeneity for semiarid landscapes within the grassland/forest continuum: a unified conceptual model. Landscape Ecology 14:465–478.

    Article  Google Scholar 

  • Breshears, D., J. Nyhan, C. Heil and B. Wilcox (1998). Effects of woody plants on microclimate in a semiarid woodland: Soil temperature and evaporation in canopy and intercanopy patches. International Journal of Plant Sciences 159(6): 1010–1017.

    Article  Google Scholar 

  • Bestelmeyer, B.T. J.R. Brown, K.M. Havastad, R. Alexander, G. Chavez, J. Herrick (2003) Development and use of state-and-transition models for rangelands. Journal of Range Management 56(2):114–126.

    Google Scholar 

  • Breshears, D. D., O. B. Myers, S. R. Johnson, C. W. mEyer and S. N. Martens (1997). Differential use of spatially heterogeneous soil moisture by two semiarid woody species: Pinus edulis and Juniperus monosperma. Journal of Ecology 85(3): 289–299.

    Google Scholar 

  • Brown, J.H., V.K. Gupta, B.L. Li, B.T. Milne, C. Restrepo and G.B. West (2002). The fractal nature of nature: power laws, ecological complexity and biodiversity. Philosophical Transactions of the Royal Society of London: Series B. 357: 619–626.

    Article  Google Scholar 

  • Bruniquel-Pinel, V. and J. P. Gastellu-Etchegorry (1998). Sensitivity of texture of high resolution images of forest to biophysical and acquisition parameters. Remote Sensing of Environment 65: 61–85.

    Article  Google Scholar 

  • Burrough, P.A. (1981). Fractal dimensions of landscapes and other environmental data. Nature 294:241–243.

    Article  Google Scholar 

  • Burrough, P.A. (1983). Multiscale sources of spatial variation in soil: I. Application of fractal concepts to nested levels of soil variations. Journal of Soil Science 34:577–597.

    Google Scholar 

  • Cale, W. G., G. M. Henebry and J. A. Yeakley (1989). Inferring process from pattern in natural communities. Bioscience 39(9): 600–605.

    Google Scholar 

  • Caylor, K. K., P. R. Dowty, H. H. Shugart and S. Ringrose (2004). Relationship between small-scale structural variability and simulated vegetation productivity across a regional moisture gradient in southern Africa. Global Change Biology 10(3):374–382.

    Article  Google Scholar 

  • Caylor, K. K., H. H. Shugart (2004). Simulated productivity of heterogeneous patches in Southern African savanna landscapes using a canopy productivity model. Landscape Ecology 19(4): 401–415.

    Article  Google Scholar 

  • Caylor, K. K., H. H. Shugart and I. Rodriguez-Iturbe (in press). Tree canopy effects on simulated water balance in southern African savannas. Ecosystems.

    Google Scholar 

  • Caylor, K. K., H. H. Shugart and T. M. Smith (2003). Tree spacing along the Kalahari Transect. Journal of Arid Environments 54(2): 281–296.

    Article  Google Scholar 

  • Chen, Y.F., F.H. Yu and M. Dong (2002) Scale-dependent spatial heterogeneity of vegetation Mu Us sandy land, a semiarid area of China. Plant Ecology 162:135–142.

    Article  Google Scholar 

  • Clark, P. J. and F. C. Evans (1954). “Distance to nearest neighbor as a measure of spatial relationships in populations.” Ecology 35(4): 445–453.

    Google Scholar 

  • Cody, M. L. (1986). Spacing patterns in Mojave Desert plant communities: near-neighbor analysis. Journal of Arid Environments 11: 199–217.

    Google Scholar 

  • Coughenour, M.B. (1992). Spatial modeling and landscape characterization of an African pastoral ecosystem: a prototype model and its potential use for monitoring drought. In: D.H. McKenzie, D.E. Hyatt and V.J. McDonald (eds.), Ecological Indicators, Vol 1, p. 787–810. Elsevier Applied Science, London and New York.

    Google Scholar 

  • Couteron, P. (2001) Using spectral analysis to confront distributions of individual species with an overall periodic pattern in semi-arid vegetation. Plant Ecology 156(2):229–243.

    Article  Google Scholar 

  • Couteron, P. and O. Lejeune (2001). Periodic spotted patterns in semi-arid vegetation explained by a propagation-inhibition model. Journal of Ecology 89(4):616–628.

    Article  Google Scholar 

  • Cowles, H. C. (1899). The ecological relations of the vegetation on the sand dunes of Lake Michigan. Botanical Gazette 27: 95.

    Google Scholar 

  • Dale, M. R. T. (1999). Spatial Pattern Analysis in Plant Ecology. Cambridge, Cambridge University Press.

    Google Scholar 

  • Dale, M. R. T. (1999). Spatial Pattern Analysis in Plant Ecology. Cambridge, Cambridge University Press.

    Google Scholar 

  • Daly, C., D. Bachelet, J. M. Lenihan, R. P. Neilson, W. Parton and D. Ojima (2000). Dynamic simulation of tree-grass interactions for global change studies. Ecological Applications 10(2): 449-469

    Google Scholar 

  • Delire C, Foley JA, Thompson S. 2003. Evaluating the carbon cycle of a coupled atmosphere-biosphere model. Global Biogeochemical Cycles 17 (1): art. no. 1012.

    Google Scholar 

  • Dietler, G. and Y.C. Zhang (1992) Fractal aspects of the swiss landscape. Physica A. 191(1-4):213–219.

    Article  Google Scholar 

  • Diggle, P.J. (1983) Statistical Analysis of Spatial Point Patterns. London: Academic Press.

    Google Scholar 

  • Dowty, P., K. K. Caylor, H. H. Shugart and W. R. Emanuel (2000). Approaches for the estimation of primary productivity and vegetation structure in the Kalahari region. Towards Sustainable Natural Resource Management in the Kalahari Region. S. Ringrose and R. Chanda. Gaborone, Botswana, University of Botswana.

    Google Scholar 

  • Dunn, C. P., D. M. Sharpe, G. R. Guntenspergen, F. Stearns and Z. Yang (1990). Methods for analyzing temporal changes in landscape pattern. Quantitative Methods in Landscape Ecology. M. G. Turner and R. H. Gardner. New York, Springer-Verlag.

    Google Scholar 

  • Eagleson, P. S. and R. I. Segarra (1985). Water-limited equilibrium of savanna vegetation systems. Water Resources Research 21(10): 1483–1493.

    Google Scholar 

  • Gignoux, J., I. R. Noble and J. C. Menaut (1995). Modelling tree community dynamics in savannas: effects of competition with grasses and impact of disturbance. Functioning and dynamics of natural and perturbed ecosystems. D. Bellan-Santini, G. Bonin and C. Emig. Paris, Lavoisier Intercept Ltd: 219–230.

    Google Scholar 

  • Gleason, H. A. (1927). Further views on the succession concept. Ecology 8(3): 299–326.

    Google Scholar 

  • Greig-Smith, P. (1979). Pattern in vegetation. Journal of Ecology 67(3): 775–779.

    Google Scholar 

  • Grime, J. P. (1979). Plant strategies and vegetation processes. Chichester ; New York, Wiley.

    Google Scholar 

  • Hély, C., P. R. Dowty, S. Alleaume, K. K. Caylor, S. Korontzi, R. J. Swap, H. H. Shugart and C. O. Justice (2003a). Regional fuel load for two climatically contrasting years in southern Africa. Journal of Geophysical Research - Atmospheres 108(D13): 8475–8491.

    Google Scholar 

  • Hély, C., K. K. Caylor, S. Alleaume, R. J. Swap and H. H. Shugart (2003b). Release of gaseous and particulate carbonaceous compounds from biomass burning during the SAFARI 2000 dry season field campaign. Journal of Geophysical Research - Atmospheres 108(D13): 8740–8750.

    Google Scholar 

  • Higgins, S. I., W. J. Bond and W. S. W. Tollope (2000). Fire, resprouting and variability: a recipe for grass-tree coexistence in savanna. Journal of Ecology 88(2): 213–229.

    Article  Google Scholar 

  • Hipondoka, M.H.T, J.N. Aranibar, C. Chirara, M. Lihavha, S.A. Macko. 2003. Vertical distribution of grass and tree roots in arid ecosystems of Southern Africa: niche differentiation of competition? Journal of Arid Environments. 54:319–325.

    Article  Google Scholar 

  • Hort, A. (1916). Enquiry into plants and minor works on odours and weather signs. By Theophrastus and translated by Sir Albert Hort, vols. I and II. Heinemann, London.

    Google Scholar 

  • Hudak, A.T. and C.A. Wessman (2001). Textural analysis of high resolution imagery to quantify bush encroachment in Madikwe Game Reserve, South Africa, 1955–1996. International Journal of Remote Sensing, 22(14) 2731–2740.

    Article  Google Scholar 

  • Hudak, A.T., and C.A. Wessman. (1998). Textural Analysis of Historical Aerial Photography to Characterize Woody Plant Encroachment in South African Savanna. Remote sensing of environment, 66(3):317.

    Article  Google Scholar 

  • Humboldt, A. von. (1807). Ideen zu einer Geographie der Pflanzen. F.G. Cotta, Tübingen (reprinted in 1963 by Wissenschaftl. Buchges, Darmstadt).

    Google Scholar 

  • Humphries HC, D.P. Coffin DP, W.K. Lauenroth. 1996. An individual-based model of alpine plant distributions. Ecological Modeling 84:99–126.

    Article  Google Scholar 

  • Hutley, L. B., A. P. O’Grady, and D. Eamus. 2001. Monsoonal influences on evapotranspiration of savanna vegetation of northern Australia. Oecologia 126:434–443.

    Article  Google Scholar 

  • Jackson, N. A. and J. S. Wallace (1999). Soil evaporation measurements in an agroforestry system in Kenya. Agricultural and Forest Meteorology 94: 203–215.

    Article  Google Scholar 

  • Jeltsch, F., S. Milton, W. R. J. Dean and N. v. Rooyen (1996). Tree spacing and coexistence in semiarid savannas. Journal of Ecology 84(4): 583–595.

    Google Scholar 

  • Jeltsch, F., S. J. Milton, W. R. J. Dean, N. van Rooyen and K. A. Moloney (1998). Modelling the impact of small-scale heterogeneities on tree-grass coexistence in semi-arid savannas. Journal of Ecology 86(5): 780–793.

    Article  Google Scholar 

  • Jeltsch, F., K. Moloney and S. J. Milton (1999). Detecting process from snapshot pattern: lessons from tree spacing in the southern Kalahari. Oikos 85(3): 451–466.

    Google Scholar 

  • Joffre, R. and S. Rambal (1993). How tree cover influences the water balance of Mediterranean rangelands. Ecology 74(2): 570–582.

    Google Scholar 

  • Justice, C. O., J. R. G. Townshend and B. J. Choudhury (1989). Comparison of AVHRR and SMMR data for monitoring vegetation phenology on a continental scale. International Journal of Remote Sensing 10(10): 1607–1632.

    Google Scholar 

  • Kadmon, R., and R. Harari-Kremer. (1999). Studying long-term vegetation dynamics using digital processing of historical aerial photographs. Remote Sensing of Environment, 6 8:164–176.

    Article  Google Scholar 

  • Keddy, P. A. (1989). Competition. New York, Chapman and Hall.

    Google Scholar 

  • Keya, G. A. (1997). Environmental triggers of germination and phenological events in an arid savannah region of northern Kenya. Journal of Arid Environments 37(1): 91–106.

    Article  Google Scholar 

  • Koch, G. W., P. M. Vitousek, W. L. Steffen and B. H. Walker (1995). Terrestrial transects for global change research. Vegetatio 121: 53–65.

    Article  Google Scholar 

  • Krummel, J.R., R.H. Garder, G. Sugihara, R.V. O’Neill and P.R. Coleman (1987). Landscape patterns in disturbed environment. Oikos 48: 321–324.

    Google Scholar 

  • Lam, N.S., and L.D. Cola. (1993). Fractal measurement. In: N. S. Lam and L. D. Cola (Ed.), Fractals in Geography, pp. New Jersey: Prentice Hall.

    Google Scholar 

  • Lefever, R. and O. Lejeune (1997). On the origin of tiger bush. Bulletin of Mathematical Biology 59(2): 263–294.

    Article  Google Scholar 

  • Lejeune, O. and M. Tlidi (1999). A model for the explanation of vegetation stripes (tiger bush). Journal of Vegetation Science 10: 201–208.

    Google Scholar 

  • Levin, S. A., 1992. The problem of pattern and scale in ecology: The Robert H. MacArthur Award Lecture. Ecology, 73(6): 1943–1967.

    Google Scholar 

  • Levin, S.A., T. Powell and J.H. Steele, editors (1993) Patch dynamics. Springer-Verlag, New York, New York. USA.

    Google Scholar 

  • Li, B.L. (2000). Fractal geometry applications in description and analysis of patch patterns and patch dynamics. Ecological Modelling. 132:33–50.

    Google Scholar 

  • Li, B.-L. and S. Archer (1997). Weighted mean patch size: A robust index for quantifying landscape structure. Ecological Modelling 102(2-3): 353–361.

    Article  Google Scholar 

  • Ludwig, F., H. de Kroon, H. H. T. Prins and F. Berendse (2001). Effects of nutrients and shade on tree-grass interactions in an East African savanna. Journal of Vegetation Science 12(4): 579–588.

    Google Scholar 

  • Ludwig, J. A., D. J. Tongway and S. G. Marsden (1999). Stripes, strands or stipples: modelling the influence of three landscape banding patterns on resource capture and productivity in semi-arid woodlands, Australia. Catena 37: 257–273.

    Article  Google Scholar 

  • Ludwig, J. A., J. A. Wiens and D. J. Tongway (2000). A scaling rule for landscape patches and how it applies to conserving soil resources in savannas. Ecosystems 3(1): 84–97.

    Google Scholar 

  • Mandelbrot, B. (1982). The Fractal Geometry of Nature. W.H. Freeman & Company. 468 pp.

    Google Scholar 

  • McCown, R. L. and J. Williams (1990). The water environment and implications for productivity. Journal of Biogeography 17(4/5): 513–520.

    Google Scholar 

  • McDonald, R., Ed. (1997). Corona: Between the Sun and the Earth. Baltimore, MD, American Society for Programmetry and Remote Sensing.

    Google Scholar 

  • McIntosh, R. P. (1967). Continuum Concept of Vegetation. Botanical Review 33(2): 130.

    Article  Google Scholar 

  • Menaut, J. C. and J. Cesar (1979). Structure and primary productivity of Lamto savannas, Ivory Coast. Ecology 60(6): 1197–1210.

    Google Scholar 

  • Miriti, M.N., S.J. Wright and H.F. Howe. The effects of neighbors on the demography of a dominant desert shrub (Ambrosia dumosa). Ecological Monographs 71(4):491–509.

    Google Scholar 

  • Mordelet, P. and J. C. Menaut (1995). Influence of Trees on Aboveground Production Dynamics of Grasses in a Humid Savanna. Journal of Vegetation Science 6(2): 223–228.

    Google Scholar 

  • Mordelet, P., J. C. Menaut and A. Mariotti (1997). Tree and grass rooting patterns in an African humid savanna. Journal of Vegetation Science 8(1): 65–70.

    Google Scholar 

  • Morton, A.G. (1981) History of Botanical Science. Academic Press, London.

    Google Scholar 

  • Musick, H.B., G.S. Schaber, and C.S. Breed. (1998). AIRSAR Studies of Woody Shrub Density in Semiarid Rangeland: Jornada del Muerto, New Mexico. Remote sensing of environment, 66(1):29.

    Article  Google Scholar 

  • Niklas, K. J. (1994). Plant allometry : the scaling of form and process. Chicago, University of Chicago Press.

    Google Scholar 

  • Ojima, D. (ed.). 1992. Modeling the Earth System. UCAR/Office for Interdisciplinary Earth Studies, Boulder, Colorado.

    Google Scholar 

  • Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Trans. System, Man, and Cybernetics 9(1): 62–66.

    Google Scholar 

  • Pacala, S. W. and D. H. Deutschman (1995). Details that matter: The spatial distribution of individual trees maintains forest ecosystem function. Oikos 74(3): 357–365.

    Google Scholar 

  • Palmer, A.R., and A.F. van Rooyen. (1998). Detecting Vegetation Change in the Southern Kalahari Using Landsat TM. Journal of arid environments, 39(2):143.

    Article  Google Scholar 

  • Pearson, D. (2002). The application of local measures of spatial autocorrelation for describing pattern in north Australian landscapes. Journal of Environmental Management 64(1): 85–95.

    Article  PubMed  Google Scholar 

  • Peters, D.P.C. 2002. Plant species dominance at a grassland-shrubland ecotone: an individual-based gap dynamics model of herbaceous and woody species. Ecological Modeling 152: 5–32.

    Article  Google Scholar 

  • Pielou, E. C. (1962). The use of plant-to-neighbor distance for the detection of competition. Journal of Ecology 50: 357–367.

    Google Scholar 

  • Phillips, D. L. and J. A. MacMahon (1981). Competition and spacing patterns in desert shrubs. Journal of Ecology 69(1): 97–115.

    Google Scholar 

  • Potter, C.S., J.T. Randerson, C.B. Field, P.A. Matson, P.M. Vitousek, H.A. Mooney and S.A. Klooster. 1993. Terrestrial ecosystem production -a process model based on global satellite and surface date. Global Biochemical Cycles 7:811–841.

    Article  Google Scholar 

  • Privette, J., Y. Tian, G. Roberts, R. J. Scholes, Y. Wang, K. K. Caylor, P. Frost and M. Mukelabai (2004). Structural characteristics and relationships of Kalahari woodlands and savannas. Global Change Biology 10(3):281–291.

    Article  Google Scholar 

  • Qi, Y. and J. Wu (1996). Effects of changing spatial resolution on the results of landscape pattern analysis using spatial autocorrelation indicies. Landscape Ecology 11(1): 39–49.

    Article  Google Scholar 

  • Raffaele, E. and T. T. Veblen (1998). Facilitation by nurse shrubs of resprouting behavior in a post-fire Shrubland in northern Patagonia, Argentina. Journal of vegetation science 9(5): 693.

    Google Scholar 

  • Ripley, B.D. (1976) The second order analysis of stationary point processes. Journal of Applied Probability, 13, 255–266.

    Google Scholar 

  • Ripley, B. D. (1977). Modelling spatial patterns. Journal of the Royal Statistical Society, Series B (Methodological) 39(2): 172–212.

    Google Scholar 

  • Rodriguez-Iturbe, I. and A. Rinaldo (1997). Fractal river basins: Chance and self-organization. New York, Cambridge University Press.

    Google Scholar 

  • Sala, O. E. and W. K. Laurenroth (1982). Small rainfall events: an ecological role in semiarid regions. Oecologia 53: 301–304.

    Article  Google Scholar 

  • Scanlon, T. M., J. D. Albertson, K. K. Caylor and C. Williams (2002). Determining land surface fractional cover from NDVI and rainfall time series for a savanna ecosystem. Remote Sensing of Environment 82(2–3.): 376–388.

    Google Scholar 

  • Schenk, H.J., C. Holzapfel, J.G. Hamilton and B.E. Mahall (2003). Spatial ecology of a small desert shrub on adjacent geological substrates. Journal of Ecology 91: 383–395.

    Article  Google Scholar 

  • Scholes, R. J. and S. R. Archer (1997). Tree-grass interactions in Savannas. Annual Review of Ecology and Systematics. 28 :517–544.

    Article  Google Scholar 

  • Scholes, R. J., P. R. Dowty, K. K. Caylor, D. A. B. Parsons, P. G. H. Frost and H. H. Shugart (2002). Trends in savanna structure and composition on an aridity gradient in the Kalahari. Journal of Vegetation Science 13(3): 419–428.

    Google Scholar 

  • Scholes, R. J. and D. A. B. Parsons, Eds. (1997). The Kalahari Transect: Research on Global Change and Sustainable Development in Southern Africa, IGBP Report 42. Stockholm, IGBP Secretariat.

    Google Scholar 

  • Scholes, R. J. and B. H. Walker (1993). An African Savanna: Synthesis of the Nylsvley Study. Cambridge, Cambridge University Press.

    Google Scholar 

  • Seghieri, J. (1995). The rooting patterns of woody and herbaceous plants in a savanna; are they complementary or in competition? African journal of ecology. Nairobi 33(4): 358–365.

    Google Scholar 

  • Shugart, H.H., K.K. Caylor, C. Hély, R.J. Swap, P.R. Dowty. (in prep) Dynamic change in the woodland and savannah ecosystems of sub-tropical Africa.

    Google Scholar 

  • Shugart, H. H., N. H. F. French, E. S. Kasischke, J. J. Slawski, C. W. Dull, R. A. Shuchman and J. Mwangi (2001). “Detection of vegetation change using reconnaissance imagery.” Global Change Biology 7(3): 247–252.

    Article  Google Scholar 

  • Shugart, H. H., L. L. Bourgeau-Chavez and E. S. Kasischke (2000). “Determination of stand properties in boreal and temperate forests using high-resolution photography and satellite imagery.” Forest Science 46(4): 478.

    Google Scholar 

  • Shugart, H. H. (2000). Importance of structure in the longer-term dynamics of landscapes. Journal of geophysical research 105(D15): 20065–20075.

    Article  Google Scholar 

  • Shugart, H. H. (1998). Terrestrial Ecosystems in Changing Environments. New York, Cambridge University Press.

    Google Scholar 

  • Shugart, H.H., and D.C. West. 1980. Forest succession models. BioScience 30:308–313.

    Google Scholar 

  • Simioni, G., X. LeRoux, J. Gignoux and H. Sinoquet (2000). Treegrass: a 3D, process-based model for simulating plant interactions in tree-grass ecosystems. Ecological Modelling 131(1): 47–63.

    Article  Google Scholar 

  • Skarpe, C. (1991). Spatial patterns and dynamics of woody vegetation in an arid savanna. Journal of vegetation science 2(4): 565–572.

    Google Scholar 

  • Skarpe, C. (1992). Dynamics of savanna ecosystems. Journal of Vegetation Science 3(3).

    Google Scholar 

  • Smit, G. N. and N. F. G. Rethman (2000). The influence of tree thinning on the soil water in a semi-arid savanna of southern Africa. Journal of Arid Environment 44: 41–59.

    Google Scholar 

  • Smith, T. M., J. F. Weishampel, H. H. Shugart and G. B. Bonan (1992). The response of terrestrial C storage to climate change: modeling C dynamics at varying temporal and spatial scales. Water, Air, & Soil Pollution 64(1–2.): 307–326.

    CAS  Google Scholar 

  • Smith, T. M. and P. S. Goodman (1987). “Successional dynamics in an Acacia nilotica -Euclea divinorum savannah in southern Africa.” Journal of Ecology 75(3): 603–610.

    Google Scholar 

  • Smith, T. M. and K. Grant (1986). The role of competition in the spacing of trees in a Burkea africana -Terminalia sericea savanna. Biotropica 18(3): 219–223.

    Google Scholar 

  • Sole, R. V. and S. C. Manrubia (1995). Are rainforests self-organized in a critical state? Journal of Theoretical Biology 173: 31–40.

    Article  Google Scholar 

  • Stein, A., W. G. M. Bastiaanssen and A. Saldana (1998). Integrating spatial statistics and remote sensing. International journal of remote sensing 19(9): 1793.

    Google Scholar 

  • St-Onge, B. A. and F. Cavayas (1995). Estimating forest stand structure from high resolution imagery using the directional variogram. International Journal of Remote Sensing 16(11): 1999–2021.

    Google Scholar 

  • Sun, G. and K. J. Ranson (1998). Radar modelling of forest spatial patterns. International journal of remote sensing 19(9): 1769.

    Google Scholar 

  • Thomas, D. S. G. and P. A. Shaw (1991). The Kalahari Environment. Cambridge, Cambridge University Press.

    Google Scholar 

  • Tilman, D. (1982). Resource competition and community structure. Princeton, N.J., Princeton University Press.

    Google Scholar 

  • Townshend, J. R. G. and C. O. Justice (1986). Analysis of the dynamics of African vegetation using the normalized difference vegetation index. International Journal of Remote Sensing 7(11): 1435–1445.

    Google Scholar 

  • Treuhaft RN, Asner GP, Law BE, Van Tuyl S (2002). Forest leaf area density profiles from the quantitative fusion of radar and hyperspectral data, Journal of Geophysical Research - Atmospheres 107:(D21).

    Google Scholar 

  • Tyson, P. D. (1986). Climatic Change and Variability in Southern Africa. Cape Town, Oxford University Press.

    Google Scholar 

  • Urban, D.L., G.B. Bonan, T.M. Smith and H.H. Shugart. 1991. Spatial applications of gap models. Forest Ecology and Management 42:95–110.

    Article  Google Scholar 

  • Walker, B. H. and I. Noy-Meir (1982). Aspects of the Stability and Resilience of Savanna Ecosystems. Ecology of Tropical Savannas. B. J. Huntley and B. H. Walker. Berlin, Springer-Verlag: 556–590.

    Google Scholar 

  • Walter, H. (1971). Natural savannas. Ecology of Tropical and Subtropical Vegetation. J. H. Burnett. Edinburgh, Oliver and Boyd.

    Google Scholar 

  • Watt, A. S. (1947). Pattern and process in the plant community. Journal of Ecology 35(1/2): 1–22.

    Google Scholar 

  • Weishampel, J. F., G. Sun, K. J. Ranson, K. D. LeJeune and H. H. Shugart (1994). Forest textural properties from simulated microwave backscatter: The influence of spatial resolution. Remote Sensing of Environment 47(2): 120–131.

    Article  Google Scholar 

  • Whiteman, G. and J. R. Brown (1998). Assessment of a method for mapping woody plant density in a grassland matrix. Journal of Arid Environments 38: 269–282.

    Article  Google Scholar 

  • Whittaker, R. H., L. E. Gilbert and J. H. Connell (1979). Analysis of two-phase pattern in a mesquite grassland, Texas. Journal of Ecology 67(3): 935–952.

    Google Scholar 

  • Wijk, M. T. v. and I. Rodriguez-Iturbe. 2002. Tree-grass compeition in space and time: Insights from a simple cellular automata model based on ecohydrological dynamics. Water Resources Research 38(9): 1179–1193.

    Google Scholar 

  • Wilson, T. B. and E. T. F. Witkowski (1998). Water requirements for germination and early seedling establishment in four African savanna woody plant species. Journal of arid environments 38(4): 541–550.

    Article  Google Scholar 

  • Woodward, F.I., T.M. Smith and W.R. Emanuel. 1995. A global land primary productivity and phytogeography model. Global Biogeochemical Cycles 9:471–490.

    Article  CAS  Google Scholar 

  • Wu, J. and Levin, S. A., 1994. A spatial patch dynamic modeling approach to pattern and process in an annual grassland. Ecological Monographs, 64(4): 447–464.

    Google Scholar 

  • Wulder, M. and B. Boots (1998). Local spatial autocorrelation characteristics of remotely sensed imagery associated with the Getis statistic. International Journal of Remote Sensing 19(11).

    Google Scholar 

  • Yeaton, R. I. and M. L. Cody (1976). Competition and spacing in plant communities: the northern Mohave desert. Journal of Ecology 64(2): 689–696.

    Google Scholar 

  • Yeaton, R. I., J. Travis and E. Gilinsky (1977). Competition and spacing in plant communities: The Arizona upland association. Journal of Ecology 65(2): 587–595.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

CAYLOR1, K.K., SHUGART, H.H. (2006). PATTERN AND PROCESS IN SAVANNA ECOSYSTEMS. In: D'Odorico, P., Porporato, A. (eds) Dryland Ecohydrology. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4260-4_15

Download citation

Publish with us

Policies and ethics