• Marko Vrabec
  • László Fodor
Conference paper
Part of the Nato Science Series: IV: Earth and Environmental Sciences book series (NAIV, volume 61)


We describe the structures and styles of deformation at the northeastern margin of the Adria microplate during Miocene to recent times. Throughout the Miocene, deformation induced by Adria-Europe convergence was partitioned between thrusting in the Dinaric and South-Alpine belts and eastward escape in front of the Adriatic indenter, north of the Periadriatic fault zone. At the Miocene-Pliocene transition, a temporary termination of tectonic escape and the onset of Adria counterclockwise rotation triggered a major change in regional tectonics. At that time, major strike-slip and contractional deformation started between rigid Adria and the Periadriatic fault, accompanied by uplift, folding, strike-slip basin formation, and, perhaps, rigid-block rotation. There is a gradual eastward change in structural style from head-on thrusting in the Italian Alps to oblique and then to predominately strike-slip deformation in the Dinaric and Pannonian regions of Slovenia. Distribution of recent seismicity and first results of GPS measurements suggest that this, or a similar, mode of deformation is still active.


Fault Zone Late Miocene Pannonian Basin Northeastern Corner Contractional Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Accaino F., Gosar A., Millahn K., Niccolich R., Poljak M., Rossi G., Zgur F. Regional and high-resolution seismic reflection investigations in the Krško basin (SE Slovenia). Annales Universitatis Scientarium Budapestinensis, Sectio. Geologica 2003; 35: 116–117.Google Scholar
  2. Anderson H.A., Jackson J.A. Active tectonics of the Adriatic region. Geophys. J. R. Astr. Soc. 1987; 91: 937–983.Google Scholar
  3. Buser S. Basic geological map of SFR Yugoslavia 1: 100.000. Explanatory notes for sheet Celje (In Slovenian with English abstract). Zvezni geološki zavod, Beograd 1979.Google Scholar
  4. Castellarin A., Cantelli L. Neo-Alpine evolution of the Southern Eastern Alps. J. Geodynamics 2000; 30: 251–274.CrossRefGoogle Scholar
  5. Csontos L. Tertiary tectonic evolution of the Intra-Carpathian area: a review. Acta Vulcanologica 1995; 7: 1–13.Google Scholar
  6. Dewey J.F., Helman L., Turco E., Hutton D.H.W., Knott S.D. “Kinematics of the Western Mediterranean.” In Alpine Tectonics, M.P. Coward, D. Dietrich, R.G. Park, eds., London: Geol. Soc. London Spec. Publ. 1989; 45: 265–283.Google Scholar
  7. Doglioni C. Tectonics of the Dolomites. J. Structural Geology 1987; 9: 181–193. CrossRefGoogle Scholar
  8. Fodor L., Jelen B., Márton E., Skaberne D., ar J., Vrabec M. Miocene-Pliocene tectonic evolution of the Slovenian Periadriatic Line and surrounding area - implication for Alpine- Carpathian extrusion models. Tectonics 1998; 17: 690–709.CrossRefGoogle Scholar
  9. Fodor L., Csontos L., Bada G., Györfi I., Benkovics L. “Tertiary tectonic evolution of the Pannonian basin system and neighbouring orogens: a new synthesis of paleostress data.” In The Mediterranean Basins: Tertiary extension within the Alpine Orogen, B. Durand, L. Jolivet, F. Horváth, M. Séranne, eds., Geol. Soc. Spec. Publ. 1999; 156: 295–334.Google Scholar
  10. Frisch W., Kuhlemann J., Dunkl I., Brügel A. Palinspastic reconstruction and topographic evolution of the Eastern Alps during late Tertiary tectonic extrusion. Tectonophysics 1998; 297: 1–15.CrossRefGoogle Scholar
  11. Grenerczy G., Kenyeres A., Fejes I. Present crustal movement and strain distribution in Central Europe inferred from GPS measurements. J. Geophys. Res. 2000; 105(B9): 21835–21846.Google Scholar
  12. Horváth F. Phases of compression during the evolution of the Pannonian basin and its bearing on hydrocarbon exploration. Marine and Petroleum Geology 1995; 12: 837–844.Google Scholar
  13. Horváth F., Cloething S. Stress-induced late-stage subsidence anomalies in the Pannonian Basin. Tectonophysics 1996; 266: 287–300.Google Scholar
  14. Kázmér M., Kovács S. Permian-Paleogene paleogeography along the Eastern part of the Insubric-Periadriatic Lineament system: Evidence for continental escape of the Bakony- Drauzug unit. Acta Geologica Hungarica 1985; 28: 71–84.Google Scholar
  15. Kázmér M., Fodor L., Józsa S., Jelen B., Herlec U., Kuhlemann J. Late Miocene paleogeography of Slovenia and the Southern Alps: a palinspastic approach. 6th Symposium on Tektonik, Strukturgeologie, Kristalingeologie, Salzburg, Austria, 1996.Google Scholar
  16. Kuščer D. Tertiary formations of Zagorje (in Slovenian with English abstract). Geologija 1969; 10: 5-85.Google Scholar
  17. Márton E., Ćosović V., Drobne K., Moro A. Palaeomagnetic evidence for Tertiary counterclockwise rotation of Adria. Tectonophysics 2003; 377: 143–156.Google Scholar
  18. Márton E., Fodor L., Jelen B., Márton P., Rifelj H., Kevrić R. Miocene to Quaternary deformation in NE Slovenia: complex paleomagnetic and structural study. J. Geodynamics 2002; 34: 627–651.Google Scholar
  19. Mellere D., Stefani C., Angevine C. Polyphase tectonics through subsidence analysis: the Oligo-Miocene Venetian and Friuli Basin, north-east Italy. Basin Research 2000; 12: 159- 182.CrossRefGoogle Scholar
  20. Mencej Z. The gravel fill beneath the lacustrine sediments of the Ljubljansko barje (in Slovenian with English abstract). Geologija 1988; 31–32: 517–553.Google Scholar
  21. Nemes F., Neubauer F., Cloething S., Genser J. The Klagenfurt basin in the Eastern Alps: an intra-orogenic decoupled flexural basin? Tectonophysics 1997; 282: 189–203.CrossRefGoogle Scholar
  22. Placer L. Contribution to macrotectonic subdivision of the border region between Southern Alps and External Dinarides. Geologija 1999a; 41: 223–255.Google Scholar
  23. Placer L. Structural meaning of the Sava folds. Geologija 1999b; 41: 191–221.Google Scholar
  24. Placer L. Geological structure of Southwestern Slovenia (in Slovenian with English abstract). Geologija 1981; 24: 27–60.Google Scholar
  25. Placer L., Živčić M., Vrabec M. “Recent deformation and seismic activity at the Adria microplate boundary in Western Slovenia and Croatia.” In Quantitative neotectonics and seismic hazard assessment: new integrated approaches for environmental management, G. Bada eds., Malév Air Tours str. 2001; 74–75.Google Scholar
  26. Placer L., Čar J. Structure of Mt. Blegoš between the Inner and Outer Dinarides. Geologija 1998; 40: 305–323.Google Scholar
  27. Peruzza L., Poli E., Rebez A., Renner G., Rogledi S., Slejko D., Zanferrari A. The 1976–1977 seismic sequence in Friuli: new seismotectonic aspects. Mem. Soc. Geol. It. 2002; 57: 391–400.Google Scholar
  28. Poljak M., Živčić M., Zupančić P. The seismotectonic characteristics of Slovenia. Pure and Applied Geophysics 2000; 157: 37–55.Google Scholar
  29. Prelogovi E., Safti B., Kuk V., Velić J., Dragaš M., Luč ić D. Tectonic activity in the Croatian part of the Pannonian basin. Tectonophysics 1998; 297: 283–293.Google Scholar
  30. Ratschbacher L., Frisch W., Linzer H. G., Merle O. Lateral extrusion in the Eastern Alps, part 2.: structural analysis. Tectonics 1991; 10: 257–271.Google Scholar
  31. Schreurs G., Coletta B. “Analogue modeling of faulting in zones of continetal transpression and transtension.” In Continetal transpressional and transtensional tectonics, R.E. Holdsworth, R.A. Strachan, J.F. Dewey, eds., Geol. Soc. Spec. Publ. 1998; 59–79.Google Scholar
  32. Schmid S.M., Pfiffner O.A., Froitzheim N., Schönborn G., Kissling E. Geophysical-geological transect and evolution of the Swiss-Italian Alps. Tectonics 1996; 15: 1036–1064.CrossRefGoogle Scholar
  33. Šifrer M. Nova dognanja o geomorfološkem razvoju Ljubljanskega Barja. Geografski zbornik 1984; 23: 8–48.Google Scholar
  34. ŠušteršičF. Poljes and caves of Notranjska. Acta Carsologica 1996; 25: 251–289.Google Scholar
  35. Tari V. “Evolution of the northern and western Dinarides: a tectonostratigraphic approach.” In Continetal collision and the tectono-sedimentary evolution of forelands, G. Bertotti, K. Schulmann, S.A.P.L Cloething, eds., EGU Stephan Mueller Publication Series 2002; 1: 223–236.Google Scholar
  36. TomljenovićB., Csontos L. Neogene-Quaternary structures in the border zone between Alps, Dinarides and Pannonian basin (Hrvatsko zagorje and Karlovac basin, Croatia). Int. J. Earth Sciences 2001; 90: 560–578.Google Scholar
  37. Vidic N. Pedogenesis and soil-age relationships of soils on glacial outwash terraces in the Ljubljana basin, PhD thesis, Boulder: University of Colorado, 1994.Google Scholar
  38. Vrabec M. Structural analysis of the Sava fault zone between Trstenik and Stahovica (in Slovenian with English abstract), PhD thesis, University of Ljubljana, 2001.Google Scholar
  39. Vrabec M. Style of postsedimentary deformation in the Plio-Quaternary Velenje basin, Slovenia. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 1999; 8: 449–463.Google Scholar
  40. Vrabec M. Some thoughts on the pull-apart origin of karst poljes along the Idrija strike-slip fault zone in Slovenia. Acta Carsologica 1994; 23: 158–168.Google Scholar
  41. Vrabec M., Pavlovčič Prešeren P., Stopar B. Active movements along the faults of the Periadriatic line system in NE Slovenia: first results of GPS measurments. Annales Universitatis Scientarium Budapestinensis, Sectio Geologica 2003; 35: 114–115.Google Scholar
  42. Žlebnik L. Pleistocene Deposits of the Kranj, Sora and Ljubljana Fields (in Slovenian with English abstract). Geologija 1971; 14: 5–51.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Marko Vrabec
    • 1
  • László Fodor
    • 2
  1. 1.Hungarian Geological InstituteUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Hungarian Geological InstituteBudapestHungary

Personalised recommendations