Skip to main content

Abstract

Mineral nutrients are essential for normal growth and development of plants. The phenomenal growth of knowledge made in the areas of the mechanism of the ion uptake, the critical role of minerals in the basic processes at cellular level and molecular approaches to the study of mineral nutrition have raised the status of mineral nutrition of plants as an independent discipline of the plant biology (Epstein, 1972; Mengel and Kirkby, 1978; Clarkson and Hanson, 1980; Marschner, 1995; Loneragan, 1997; Grossman and Takahashi, 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwala, S.C., Chatterjee, C., Sharma, P.N., Sharma, C.P. and Nautiyal, N. (1979). Pollen development in maize plants subjected to molybdenum deficiency. Can. J. Bot. 57, 1946–1950.

    CAS  Google Scholar 

  • Agarwala, S.C., Sharma, C.P., Chatterjee, C., Sharma P.N., Bisht, S.S. and Nautiyal, N. (1969). Annual Progress Report of I.C.A.R. Coordinated scheme on Micronutrients of soils for the year 1968–69. Lucknow University of Lucknow (U.P) INDIA.

    Google Scholar 

  • Agarwala, S.C., Sharma, P.N., Chatterjee, C. and Sharma, C.P. (1981). Development and enzymatic changes during pollen development in boron deficient maize plants. J. Plant. Nutr. 3, 329–336.

    CAS  Google Scholar 

  • Ali, A.H.N. and Jarvis, B.C. (1988). Effects of auxin and boron on nucleic acid metabolism and cell division during adventitious root regeneration. New Phytol. 108, 383–391.

    CAS  Google Scholar 

  • Armstrong, M.J and Kirkby, E.A. (1979b). The influence of humidity on the mineral composition of tomato plants with special reference to calcium distribution. Plant Soil. 52, 427–435.

    Article  CAS  Google Scholar 

  • Asher, C.J. (1991). Beneficial elements, functional nutrients and possible new essential elements. In: “Micronutrients in agriculture, 2nd edition (J.J. Mortvedt, F.R. Cox, L.M. Shuman and R.M Welch, eds.) pp 703–723. Soil. Sci. Soc. Amer. Book series, No.4, Madison, WI, USA.

    Google Scholar 

  • Ayala, M.B. and Sandmann, G. (1988a). Activities of Cu-containing proteins in Cu-depleted pea leaves. Physiol. Plant. 72, 801–806.

    Google Scholar 

  • Baker, A.J.M. (1987). Metal tolerance. New Phytol. 106, 93–111.

    CAS  Google Scholar 

  • Barry, D.A.J and Miller, M.H. (1989). Phosphorus nutritional requirement of maize seedlings for maximum yield. Agron. J. 81, 95-99

    Article  Google Scholar 

  • Baszynski, T., Warcholowa, M., Krupa, Z, Tukendorf, A., Krol, M and Wolinska, D. (1980). Effect of magnesium deficiency on photochemical activites of rape and buck wheat chloroplasts. Z. Pflanzenphysiol. 99, 295–303.

    CAS  Google Scholar 

  • Bereczky, Z., Wang, H-Y., Schubert, V., Ganal, M and Bauer, P. (2003). Differential reglation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato. J. Biol. Chem. 278, 24697–24704.

    Article  PubMed  CAS  Google Scholar 

  • Bergmann, W. (1988). ‘Ernahrungsstorungen bei kulturpflanzen. Entstehung, visuelle und analytische Diagnose’. Fischer Verlag, Jena.

    Google Scholar 

  • Bernard, R.L and Howell, R.W. (1964). Inheritance of phosphorus sensitivity in soybeans. Crop Sci. 4, 298–299.

    Google Scholar 

  • Brancardo, D., Rabotti, G., Scienza, A. and Zocchi, G. (1995). Mechanism of Fe-efficiency in roots of vitis spp. in response to iron deficiency stress. Plant and Soil. 171, 229–234.

    Google Scholar 

  • Breckle, S.-W. (1991). Growth under stress. Heavy metals. In: “The plant root, the Hidden Half (Y. Waisel, A. Eshel and U. Kafkafi, eds.), pp. 351–373. Marcel Dekker, New York.

    Google Scholar 

  • Brown, J.C., Jolley, V.D. and Lytle, C.M. (1991). Comparative evaluation of iron solubilizing substances (phytosiderophores) released by oats and corn: Iron-efficient and iron-inefficient plants. Plant Soil. 130, 157–163.

    Article  CAS  Google Scholar 

  • Brown, J.C and Jones, W.E. (1975). Heavy metal toxicity in plants. I. A crises in embryo. Commun. Soil Sci. Plant Anal. 6, 421–438.

    CAS  Google Scholar 

  • Brown, P.H., Welch, R.M and Madison, J.T. (1990). Effect of nickel deficiency on soluble anion, amino acid and nitrogen levels in barley. Plant Soil 125, 19–27.

    CAS  Google Scholar 

  • Brown, P.H., Welch, R.M. and Cary, E.E. (1987). Nickel : a micronutrient essential for higher plants. Plant Physiol. 85, 801–803.

    CAS  PubMed  Google Scholar 

  • Burnell, J.N and Hatch, M.D. (1988). Low bundle sheath carbonic anhydrase is apparent by essential for effective C4 pathway operation. Plant Physiol. 86, 1252–1256.

    CAS  PubMed  Google Scholar 

  • Bush, D.S., Cornejo, M.-J. Huang, C.-N. and Jones, R.L. (1986). Ca2+stimulated secretion of a-amylase during development in barley aleurone protoplasts. Plant Physiol. 82, 566–574.

    CAS  PubMed  Google Scholar 

  • Cakmak, I and Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol. 98, 1222–1227.

    CAS  PubMed  Google Scholar 

  • Cakmak, I., Marschner, H and Bangerth, F. (1989). Effect of zinc nutritional status on growth, protein metabolism and levels of indole-3 acetic acid and other phytohormones in bean (Phaseolus vulgaris L.). J. Exp. Bot. 40, 404–412.

    Google Scholar 

  • Cammack, R., Fernandez, V.M and Schneider, K. (1988). Nickel in hydrogenases from sulphate-reducing, photosynthetic, and hydrogen oxidizing bacteria. In: “The Bioorganic Chemistry of Nickel” (J.R. Lancaster jr, ed.) pp 167–190. Verlag-Chemie, Weinheim

    Google Scholar 

  • Cammerano, P., Felsani, A., Gentile, M., Gualerzi, C., Romeo, C and Wolf, G. (1972). Formation of active hybrid 80s particles from sub units of pea seedlings and mammalian liver ribosomes. Biochim. Biophys. Acta. 281, 625–642.

    Google Scholar 

  • Chatterjee, C., Nautiyal, N. and Agarwala, S.C. (1985). Metabolic changes in mustard plant associated with molybdenum deficiency. New Phytol. 100, 511–518.

    CAS  Google Scholar 

  • Churchill, K.A and Sze, H. (1984). Anion-sensitive, H+-pumping ATPase of oat roots. Direct effects of Cl-, NO3 - and a disulfonic stibene. Plant Physiol. 76, 490–497.

    CAS  PubMed  Google Scholar 

  • Cladwell, C.R and Haug, A. (1981). Temperature dependence of the barley root plasma membrane bound Ca2+and Mg2+- dependent ATPase. Physiol Plant. 53, 117–124.

    Google Scholar 

  • Clarkson, D.T. and Hanson, J.B. (1980). The mineral nutrition of higher plants. Annu. Rev. Plant Physiol. 31, 239–298.

    Article  CAS  Google Scholar 

  • Clemens, S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta. 212, 475–486.

    Article  PubMed  CAS  Google Scholar 

  • Cobbett, C.S. (2000). Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 123, 825–832.

    Article  PubMed  CAS  Google Scholar 

  • Cobbett, C.S. and Goldsbrough, P. (2002). Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Ann. Rev. Plant Biol. 53, 159–182.

    CAS  Google Scholar 

  • Coleman, J.E. (1992). Zinc proteins: enzymes, storage proteins, transcription factors and replication proteins. Ann. Rev. Biochem. 61, 897-946

    PubMed  CAS  Google Scholar 

  • Coleman, W.J., Govindjee. and Gutowsky, H.S. (1987). The location of the chloride binding sites in the oxygen-evolving complex of spinach photosystem II. Biochem. Biophys. Acta 894, 453–459.

    CAS  Google Scholar 

  • Critchley, C. (1985). The role of chloride in photosystem II. Biochem. Biophys. Acta 811, 33–46.

    CAS  Google Scholar 

  • Cumming, J.R. and Taylor, G.J. (1990). Mechanism of metal tolerance in plants: Physiological adaptations for exclusion of metal ions from the cytoplasm. In: “Stress responses in plants”: Adaptations and Aclimatation Mechanisms. (Eds.) R.G. Alscher and J.R Cumming. Wiley-Liss Inc. New York, pp. 329–356.

    Google Scholar 

  • Dave, I. C. and Kannan, S. (1980). Boron deficiency and its associated enhancement of RNase activity in bean plants. Z. Pflanzenphysiol. 97, 261–264.

    CAS  Google Scholar 

  • Davies, J.N., Adams, P. and Winsor, G.W. (1978). Bud development and flowering of Chrysanthemum morifolium in relation to some enzyme activities and to the copper, iron and manganese status. Commun. Soil Sci. Plant Anal. 9, 249–264.

    CAS  Google Scholar 

  • Delhaize, E., Kataoka, T., Hebb, D.M., White, R.G. and Ryan, P.R. (2003). Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Physiol. 103, 695–702.

    Google Scholar 

  • Delhaize, E., Loneragan, J. F. and Webb, J. (1985). Development of three copper metalloenzymes in clover leaves. Plant Physiol. 78, 4–7.

    CAS  PubMed  Google Scholar 

  • Dixon, N.E., Gazola, C., Blakeley, R.L. and Zerner, B. (1975). Jack bean urease (EC. 3.5.1.5), a metalloenzyme. A simple biological role for nickel? J. Am. Chem. Soc. 97, 4131–4133.

    PubMed  CAS  Google Scholar 

  • Dugger, W.M. (1983). Boron in plant metabolism. In: “Encyclopedia of plant physiology, new series” (A. Lauchli and R.L. Bieleski, eds.) Vol. 15B, pp 626–650, Springer-Verlag, Berlin

    Google Scholar 

  • Edelbauer, A. (1980). Auswirkung von abgestuftem Schwefelmangel auf Wachstum, Substanzbildung und Mineralstoffgehalt von Tomate (Lycopersicon esculentum Mill.) In: Nahrlosungskultur. Die Bodenkultur, 31, 229–241.

    Google Scholar 

  • Edwards, D.G. and Asher, C.J. (1982). Tolerance of crop and pasture species to manganese toxicity. In “Proceedings of the Ninth plant Nutrition Colloquim, Warwick, England” (A. Scaife, ed). pp. 145–150. Commonwealth Agricultural Bureau, Farnham Royal, Bucks, UK.

    Google Scholar 

  • Elstner, E.F. (1982). Oxygen activation and oxygen toxicity. Annu. Rev. Plant Physiol. 33, 73–96.

    Article  CAS  Google Scholar 

  • Epstein, E. (1965). Mineral metabolism. In: “Plant Biochemistry” (J. Bonner and J. E. Varner, eds.), pp 438–466. Academic Press, London.

    Google Scholar 

  • Epstein, H. (1972). Mineral Nutrition of Plants: Principles and Perspectives. Wiley, New York.

    Google Scholar 

  • Ernst, W.H.O. (1976). Physiological and biochemical aspects of metal tolerance. In: “Effects of air pollution on plants” (eds.) T.A. Mansfield, Cambridge University, Press, Cambridge, pp. 115–133.

    Google Scholar 

  • Eskew, D.L., Welch, R.M. and Norwell, W.A. (1984). Nickel in higher plants. Further evidence for an essential role. Plant Physiol. 76, 691–693.

    CAS  PubMed  Google Scholar 

  • Evans, D.E., Briars, S.-A. and Williams, L.E. (1991). Active calcium transport by plant cell membranes. J. Exp. Bot. 42, 285–303.

    CAS  Google Scholar 

  • Flowers, T.J., Flowers, A and Greenway, H. 1986. Effects of sodium chloride on tobacco plants. Plant cell Environ. 9, 645–651.

    CAS  Google Scholar 

  • Flowers, T. J. (1988). Chloride as a nutrient and as an osmoticum. In ‘Advances in plant nutrition’ Vol. 3 (B. Tinker and A. Lauchli, eds.), pp. 55–78. Praeger. New York.

    Google Scholar 

  • Forde, B.G. (2000). Nitrate transporters in plants: structure, function and regulation. Biochim. Biophys. Acta. 1465, 219–235.

    PubMed  CAS  Google Scholar 

  • Fox, T.C. and Guerinot, M.L. (1998). Molecular biology of cation transport in plants. Ann. Rev. Plant Physiol. 29, 511–566.

    Google Scholar 

  • Foy, C.D. (1974). Effect of aluminium on plant growth. In: “The plant root and its environment” (E.W. Carson, ed.) pp 601–642, University press of Virginia, Charlottesville.

    Google Scholar 

  • Foy, C.D., Chaney, R.L. and White, M.C. (1978). The physiology of metal toxicity in plants. Ann. Rev. Plant Physiol. 29, 511–566.

    CAS  Google Scholar 

  • Franco-Zorrilla JM, Gonzalez E, Bustos R, Linhares F, Leyva A, Paz-ares J 2004. The transcriptional control of plant responses to phosphate limitation. J. Exp. Bot. 55, 285–293.

    Article  PubMed  CAS  Google Scholar 

  • Fredeen, A.L., Rao, I.M. and Terry, N. (1989). Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. Plant Physiol. 89, 225–230.

    CAS  PubMed  Google Scholar 

  • Grill, E., Winnacker, E.L. and Zenk, M.H. (1985). Phytochelations: The principal heavy metal complexing peptides of higher plants. Science. 230, 674–676.

    CAS  PubMed  Google Scholar 

  • Grossman, A and Takahashi, H. (2001). Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 163-210.

    CAS  Google Scholar 

  • Hammond, J.P., Bennett, M.J., Bowen, H.C., Broadley, M.R., East wood, D.C., May, S.T., Rahn, C., Swarup, R., Woolaway, K.E. and White, P.J. (2003).Changes in gene expression in Arobidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiology. 132, 578–596.

    Article  PubMed  CAS  Google Scholar 

  • Harmon, A.C., Gribskov, M., Gubrium, E and Harper, J.F. (2001). The CDPK super family of protein kinases. New Phytol. 151, 175–183.

    Article  CAS  Google Scholar 

  • Helal, H.M. and Mengel, K. (1979). Nitrogen metabolism of young barley plants as affected by NaCl salinity and potassium. Plant soil. 51, 457–462.

    Article  CAS  Google Scholar 

  • Hodge, A. (2004). The plastic plant: root responses to heterogenous supplies of nutrients. New Phytol. 162, 9–24.

    Article  Google Scholar 

  • Hopkins, W.G. and Hüner, N.P.A. (2004). Introduction to plant physiology. Third edition. p.246, John Wiley & Sons Inc.

    Google Scholar 

  • Horak, O. (1985a). Zur Bedeutung des Nickels fur Fabaceae. I. Vergleichende Untersuchungen uber den Gehalt vegetativer Teile und Samen an Nickel und anderen Elementen. Phyton(Austria). 25, 135–146.

    CAS  Google Scholar 

  • Hussain, D., Haydon, M.J., Wang, Y., Wong, E., Sherson, S.M., Young, J., Camakaris, J., Harper, J.F. and Cobbett, C.S. (2004). P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell. 16, 1327–1339.

    Article  PubMed  CAS  Google Scholar 

  • Karmoker, J.L., Clarkson, D.L., Saker, L.R., Rooney, J.M. and Purves, J.V. (1991). Sulphate deprivation depresses the transport of nitrogen to the xylem and the hydraulic conductivity of barley (Hordeum vulgare L.) roots. Planta 185, 269–278.

    Article  CAS  Google Scholar 

  • Kuiper, D., Schuit, J. and Kuiper, P.J.C. (1990). Actual cytokinin concentrations in plant tissue as an indicator for salt resistance in cereals. Plant Soil 123, 243–250.

    Article  CAS  Google Scholar 

  • Krueger, R.W., Lovatt, C.J and Albert, L.S. (1987). Metabolic requirement of cucurbita pepo for boron. Plant Physiol. 83, 254–258.

    CAS  PubMed  Google Scholar 

  • Lauer, M.J., Blevins, D.G and Sierzputowska-Gracz, H. (1989). 31P-nuclear magnetic resonance determination of phosphate compartmentation in leaves of reproductive soybeans (Glycine max L.) as effected by phosphate nutrition. Plant Physiol. 89, 1331–1336.

    CAS  PubMed  Google Scholar 

  • Lee, J., Hyunju Bae., Jeeyon Jeong., Jae-Yun Lee, Young-Yell Yang., Inhwan Hwang, Enrico Martinoia. and Youngsook Lee. 2003. Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals. Plant Physiol. 133, 589–596.

    PubMed  CAS  Google Scholar 

  • Legge, R.L., Thompson, E., Baker, J.E. and Lieberman, M. (1982). The effect of calcium on the flidity and phase properties of microsomal membranes isolated from post climacteric Golden Delicious apples. Plant Cell Physiol. 23, 161–169.

    CAS  Google Scholar 

  • Leon Kochian, V., Owen Hoekenga, A. and Miguel Pineros, A. (2004). How do crop plants tolerate acid soils? Mechanisms of Aluminium tolerance and phosphorus efficiency. Annu. Rev. Plant Biol. 55, 459–493.

    PubMed  Google Scholar 

  • Leustek, T and Saito, K. 1999. Sulfate transport and assimilation in plants. Plant Physiol. 120, 637–643.

    Article  PubMed  CAS  Google Scholar 

  • Lin, D.C. and Nobel, P.S. (1971). Control of photosynthesis by Mg2+. Arch. Biochem. Biophys. 145, 622–632.

    PubMed  CAS  Google Scholar 

  • Lindhauer, M.G. (1985). Influence of K nutrition and drought on water relation and growth of sunflower (Helianthus annuus L. ). Z. Pflanzenernahr. Bodenk. 148, 654–669.

    Google Scholar 

  • Loneragan, J.F and Snowball, K. (1969). Calcium requirements of plants. Aust. J. Agric. Res. 20, 465–478.

    CAS  Google Scholar 

  • Loneragan, J.F. (1997). Plant nutrition in the 20thand perspectives in for the 21stcentury. Plant Soil. 196, 163–174.

    Article  CAS  Google Scholar 

  • Loomis, W.D. and Durst, R.W. (1991). Boron and cell walls. Curr. Top. In Plant Biochem. Physiol. 10, 149–178.

    CAS  Google Scholar 

  • Lynch, J., Lauchli, A. and Epstein, E. (1991). Vegetative growth of the common bean in response to phosphorus nutrition. Crop Sci. 31, 380–387.

    Article  CAS  Google Scholar 

  • Lynch, J. and Brown, K.M. (2001).Topsoil foraging- an architectural adaptation of plants to low phosphorus availability. Plant Soil. 237, 225–237.

    Article  CAS  Google Scholar 

  • Marcar, N.E. and Graham, R.D. (1987). Genotypic variation for manganese efficiency in wheat. J. Plant Nutr. 10, 2049–2055.

    CAS  Google Scholar 

  • Marghoshas, M. and Vallere, B.L. (1957). A cadmium protein from equine kidney cortex. J. Am. Chem. Soc. 79, 4813–4814.

    Google Scholar 

  • Marschner, H. (1995). Mineral Nutrition of higher plants. Second edition. Academic Press, London.

    Google Scholar 

  • Mengel, K. and Kirkby, E.A. (1978). Principles of plant nutrition. Bern. Int. Potash Inst. pp. 593.

    Google Scholar 

  • Ni, J.J., Wu, P., Len, A.C., Zhans, Y.S. and Tao, Q.W. (1996). Low phosphorus effects in the metabolism of rice seedlings. Commun-Soil-Sci-Plant-anal. Montecello, N.Y, Marcell Dekker Inc. V. 27 (18/20) pp. 3073–3084.

    Google Scholar 

  • Obata, H. and Umebayashi, M. (1988). Effect of zinc deficiency on protein synthesis in cultures tobacco plant cells. Soil Sci. Plant Nutr. (Tokyo). 34, 351–357.

    CAS  Google Scholar 

  • Ohki, K., Wilson, D.O. and Anderson, O.E. (1981). Manganese deficiency and toxicity sensitivities of soybean cultivar. Agron. J. 72, 713–716.

    Google Scholar 

  • Pushnik, J.C and Miller, G.W. (1989). Iron regulation of chloroplast photosynthetic function: Mediation of PSI development. J. Plant Nutr. 12, 407–421.

    CAS  Google Scholar 

  • Raghothama, K.G. (1999). Phosphate acquisition. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 665–693.

    Article  PubMed  CAS  Google Scholar 

  • Rauser, W.E. (1990). Phytochelatins. Ann. Rev. Biochem. 59, 61–86.

    PubMed  CAS  Google Scholar 

  • Ravindranath, N.N.V.S., Satyanarayana, N.V., Prasad, P. and Madhava Rao, K.V. (1985). Foliar application of potassium on the growth and theyield components of Pigeon pea (Cajanus cajan L. Mill.). Proc. Indian Acad. Sci (Plant Sci.) 94, 671–676.

    Google Scholar 

  • Raschke, K., Hedrich, R., Beckmann, U. and Schroeder, J.L. (1988). Exploring biophysical and biochemical components of the osmotic motor that drives stomatal movement. Bot. Acta. 101, 283–294.

    CAS  Google Scholar 

  • Rebafka, F.P., Ndunguru, B.J. and Marschner, H. (1993). Single superphosphate depresess molybdenum uptake and limits yield response to phosphorus in groundnut (Arachis hypogea L.) grown on an acid sandy soil in Niger, West Africa. Fert. Res. 34, 233–242.

    Article  CAS  Google Scholar 

  • Reddy, V.S., Ali, G.S. and Reddy, A.S.N. (2002). Genes encoding calmodulin binding proteins in Arabidopsis genome. J. Biol. Chem. 277, 9840–9852.

    PubMed  CAS  Google Scholar 

  • Reddy, K.J. and Rao, K.V.N. (1979). Effect of zinc on growth and metabolism in two varieties of Cicer arietinum L. Ind. J. Plant Physiol. 22 (2), 254–261.

    CAS  Google Scholar 

  • Roberts, D. M and Harmon, A. C. 1992. Calcium-modulated proteins: targets of intracellular calcium signals in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 375–414.

    Article  CAS  Google Scholar 

  • Robertson, G.A and Loughman, B.C. (1974). Reversible effects of boron on the absorption and incorporation of phosphate in Vicia faba L. New Phytol. 73, 291–298.

    CAS  Google Scholar 

  • Robson, A.D. and Pitman, M.G. (1983). Interactions between nutrients in higher plants. In “Encyclopedia of Plant Physiology New series (A. Lauchli and R. L. Bieleski, eds) vol. 15A, pp 147–180. Springer-Verlag, Berlin and New York.

    Google Scholar 

  • Ruano, A., Poschenrieder, Ch. and Barcelo, J. (1988). Growth and biomasss partitioning in zinc toxic bush beans. J. Plant Nutr. 11, 577–588.

    CAS  Google Scholar 

  • Ryan, P.R., Delhaize, E. and Jones, D.L. (2001). Function and mechanism of organic anion exudation from plant roots. Ann. Rev. Plant Physiol. Plant Mol. Biol. 52, 527–560.

    Article  CAS  Google Scholar 

  • Sandmann, G. and Boger, P. (1983). The enzymatological function of heavy metals and their role in electron transfer processes of plants. In: Inorganic Plant Nutrition, Encycl, Plant Physiol. New Series, Vol. 15B (A. Lauchli and R. L. Bieleski, Eds.) p. 563–596: Springer Verlag, Berlin.

    Google Scholar 

  • Saito, K. (2000). Regulation of sulfate transport and synthesis of sulfur containing amino acids. Curr. Opin. Plant. Biol. 3, 188–195.

    PubMed  CAS  Google Scholar 

  • Sasaki, T., Yamamoto, Y., Ezaki, E., Katsuhara, M., Ju AS, et al. (2004). A wheat gene encoding an aluminium activated malate transporter. Plant J. 37, 645–653.

    Article  PubMed  CAS  Google Scholar 

  • Scheible, W.R., Lauerer, M., Schulze, E.D., Caboche, M and Stitt, M. (1997). Accumulation of nitrate in the shoot acts as a signal to regulate shoot - root allocation in tobacco. Plant J. 11, 671–691.

    Article  CAS  Google Scholar 

  • Sharma, C.P., Sharma, P.N., Bisht, S.S. and Nautiyal, B.D. (1982). Zinc deficiency induced changes in cabbage. In ‘Proceedings of the Ninth Plant Nutrition Colloquium, Warwick, England’ (A. Scaife, ed.)

    Google Scholar 

  • Sharma, S. and Sanwal, G.G. (1992). Effect of Fe deficiency on the photosynthetic system of maize. J. Plant Physiol. 140, 527–530

    CAS  Google Scholar 

  • Sivaguru, M., Ezaki, B., He, Z.H., Tong, H., Osawa, H. et al., (2003). Aluminium induced gene expression and protein localization of a cell wall associated receptor kinase in Arabidopsis. Plant Physiol. 132, 2256–2266.

    Article  PubMed  CAS  Google Scholar 

  • Snedden, W.A. and Fromm, H. (2001). Calmodulin as a versatile calcium signal transducer in plants. New Phytol. 151, 35–66.

    Article  CAS  Google Scholar 

  • Takahashi, H., Watanabe-Takahashi, A., Smith, F.W., Blake-Kalff, M., hawkesford, M.J and Saito, K. (2000). The roles of three functional sulfate transporters involved in uptake and translocation of sulfate in Arabidopsis thaliana. Plant J. 23, 171–182.

    Article  PubMed  CAS  Google Scholar 

  • Talbott, L.D. and Zeiger, E. (1998). The role of sucrose in guard cell osmoregulation. J. Exp. Bot. 49, 329–337.

    Article  Google Scholar 

  • Tanada, T. (1978). Boron-key elements in the actions of phytochrome and gravity. Planta. 143, 109–111.

    Article  CAS  Google Scholar 

  • Taylor, G.J. (1988). The physiology of aluminuim tolerance. In: “Metal ions in biological systems” Vol 24: Aluminium and its role in biology (ed.) H. Siege, Marcel Dekker, New York, pp. 165–198.

    Google Scholar 

  • Terry, N. (1977). Photosynthesis, growth and the role of chloride. Plant Physiol. 60, 69–75.

    CAS  PubMed  Google Scholar 

  • Tewari, R.K.. (2004). Role of mineral nutrient elements in Mulberry(Morus alba L.) Plants with particular reference to oxidative metabolism. Ph.D thesis, University of Lucknow, INDIA.

    Google Scholar 

  • Thellier, M., Duval, Y. and Demarty, M. (1979). Borate exchanges of Lemna minor L. as studied with the help of the enriched stable isotope and of a (n,α) nuclear reaction. Plant Physiol. 63, 283–288.

    CAS  PubMed  Google Scholar 

  • Thiel, H. and Finck, A. (1973). Ermittlung von Grenzwerten optimaler Kupfer Versorgung fur Hafer und Sommergerste. Z. Pflanzenernahr. Bodenk. 134, 107–125.

    CAS  Google Scholar 

  • Tinker, P.B., Jones, M.D and Durall, D.M. (1992). A functional comparison of ecto and endo mycorrhizae. In “Mycorrhizae in Ecosystems” (D. J. Read, D. H. Lewis, A. H. Fitter and I. J. Alexander, eds), pp. 303–310. CAB International, Wellingford, U.K.

    Google Scholar 

  • Toyota, K., Koizumi, N. and Sato, F. (2003). Transcriptional activation of Phosphoenol pyruvate carboxylase by Phosphorus deficiency in tobacco . J. Exp. Bot. 54, 961–969.

    Article  PubMed  CAS  Google Scholar 

  • Uexkiill, H.R. von. (1985). Chlorine in the nutrition of palm trees, Oleagineux. 40, 67–72.

    Google Scholar 

  • Usha Kumari, J. and Reddy, K.J. (2000). Effect of Phosphorus and Zinc on growth and fruit yield of Okra (Abelmoschus esculentus (L) Moench). Bulletin of Pure and Applied Sciences. 19 B (No.1), 17–19.

    Google Scholar 

  • Vance, C.P., Uhde-Stone C, Allan, D.L. (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a non-renewable resource. New Phytologist. 157, 423–447.

    Article  CAS  Google Scholar 

  • Vaughan, A.K.F. (1977). The relation between the concentration of boron I the reproductive and vegetative organs of maize plants and their development. Rhod. J. Agric. Res. 15, 163–170.

    CAS  Google Scholar 

  • Vallee, B.L. and Falchuk, K.H. (1993). The biochemical basis of zinc physiology. Physiol. Rev. 73, 79–118.

    PubMed  CAS  Google Scholar 

  • Vidmar, J.J., Schjoerring, J.K., Touraine, B. and Glass, A.D.M. (1999). Regulation of the hvst1 gene encoding a high-affinity sulfate transporter from Hordeum vulgare. Plant Mol. Biol. 40, 883–892.

    Article  PubMed  CAS  Google Scholar 

  • Vielemeyer, H. P., Fischer, F. and Bergmann, W. (1969). Untersuchungen uber den Einfulss der Mikronahrstoffe Eisen und Mangan auf den Stickstoff - Stoffwechsel Landwirtschaftelicher Kulturpflanzen. 2. Mitt.: Untersuchungen uber die Wirkung des Mangans auf die Nitratreduktion und den Gehalt an frein Aminosauren in jungen Buschbohenpflanzen. Albrecht - Thaer - Arch. 13, 393–404.

    CAS  Google Scholar 

  • Vunkova-Radeva, R., Schiemann, J., Mendel, R.-R., Salcheva, G. and Georgieva, D. (1988). Stress and activity of molybdenum-containing complex (molybdenum co-factor) in winter wheat seeds. Plant Physiol. 87, 533–535.

    CAS  PubMed  Google Scholar 

  • Wagner, H. and Michael, G. (1971). Der Einfluss unterschiedlicher Stickstoffversorgung auf die Cytokininbildung in Wurzeln von Sonnenblumenpflanzen. Biochem Physiol. Pflanz. 162, 147–158.

    CAS  Google Scholar 

  • Walch-Liu, P., Neumann, G., Bangerth, F. and Engels, C. (2000). Rapid effects of nitrogen form on leaf morphogenesis in tobacco. J. Exp. Bot. 51, 227–237.

    Article  PubMed  CAS  Google Scholar 

  • Walker, C.D., Graham, R.D., Madison, J.T., Cary, E.E. and Welch, R.M. (1985). Effects of Ni deficiency on some nitrogen metabolites in cowpea (Vigna unguiculata L. Walp). Plant Physiol. 79, 474–479.

    CAS  PubMed  Google Scholar 

  • Walker, C.J. and Weinstein, J.D. (1991). Further characterization of the magnesium chelatase in isolated developing cucumber chloroplasts. Plant Physiol. 95, 1189–1196.

    CAS  PubMed  Google Scholar 

  • Wallace, A., Frolich, E. and Lunt, O.R. (1966). Calcium requirements of higher plants. Nature (London). 209, 634.

    CAS  Google Scholar 

  • Wang, Y-H, Garvin, D.F. and Kochian, L.V. (2002). Rapid induction of regulatory and transporter genes in response to phosphorus, potassium and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere- mediated signals. Plant Physiology 130, 1361–1370.

    PubMed  CAS  Google Scholar 

  • Wedding, R.T. and Black, M.K. (1988). Role of magnesium in the binding of the substrate and effectors to phosphoenol pyruvate carbozylase from a CAM plant. Plant Physiol. 87, 443–446.

    Article  CAS  PubMed  Google Scholar 

  • Wheeler, D.N., Edmeades, D.C., Christie, R.A. and Gardner, R. (1992c). Effect of aluminium on growth of 34 plant species: a summary of results obtained in low ionic strength solution culture. Plant Soil. 146, 61–66.

    CAS  Google Scholar 

  • Wintz, H. and Vulpe, C. (2002). Plant copper chaperones. Biochem. Soc. Trans. 30, 732–735.

    PubMed  CAS  Google Scholar 

  • Willenbrink, J. (1967). Uber Beziehungen zwischen proteinumsatz und Schwefelver-sorgungder chloroplasten. Z. Pflanzenphysiol. 56, 427–438.

    CAS  Google Scholar 

  • Wong, M.H. and Bradshaw, A.D. (1982). A comparison of the toxicity of heavy metals, using root elongation of rye grass, Lolium perenne. New Phytol. 91, 255–261.

    CAS  Google Scholar 

  • Woolhouse, H.W. (1983). Toxicity and tolerance in the responses of plants of metals. In: Lange, O. L., P. S. Nobel., C. B. Osmond and H. Ziegler (eds.) Physiological Plant Ecology III. Responses to chemical and biological environment. Springer-Verlag, Berlin, Heidelberg and New York. pp 245–300.

    Google Scholar 

  • Yang, Z., Sivaguru, M., Horst, W ans Matsumoto, H. 2000. Aluminium tolerance is achieved by exudation of citric acid from roots of soybean (Glycine max). Plant Physiol. 110, 72–77.

    CAS  Google Scholar 

  • Yeo, A.R., Caprow, S.J.M. and Flowers, T.J. (1985). The effect of salinity upon photosynthesis in rice (Oryza sativa L.): Gas excahange by individual leaves in relation to their salt content. J. Exp. Bot. 36, 1240–1248.

    CAS  Google Scholar 

  • Zhang, H., Jennings, A., Barlow, P.W. and Forde, B.G. (1999). Dual pathways for regulation of root branching by nitrate. Proc. Natl. Acad. Sci. USA. 96, 6529–6534.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

REDDY, K.J. (2006). NUTRIENT STRESS. In: Madhava Rao, K., Raghavendra, A., Janardhan Reddy, K. (eds) Physiology and Molecular Biology of Stress Tolerance in Plants. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4225-6_7

Download citation

Publish with us

Policies and ethics