Skip to main content

Carbon Nanotube Field-effect Transistors-The Importance of Being Small

  • Chapter
Book cover AmIware Hardware Technology Drivers of Ambient Intelligence

Part of the book series: Philips Research ((PRBS,volume 5))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhou, Ch., Kong, J. and Dai, H., 2000, Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters, Appl. Phys. Lett., 76, 1597-1599.

    Article  Google Scholar 

  2. Tans, S. J. and Dekker, C., 2000, Potential modulations along carbon nano-tubes, Nature, 404, 834-835.

    Article  Google Scholar 

  3. Appenzeller, J., Knoch, J., Martel, R., Derycke, V., Wind, S. and Avouris, Ph., 2002, Short-channel like effects in Schottky barrier carbon nanotube field-effect transistors, Internat. Electron Dev. Meeting 2002, Technical Digest, 285-288.

    Google Scholar 

  4. Appenzeller, J., Knoch, J., Derycke, V., Wind, S. and Avouris, Ph., 2002, Field-modulated carrier transport in carbon nanotube transistors, Phys. Rev. Lett., 89, 126801.

    Article  Google Scholar 

  5. Heinze, S., Tersoff, J., Martel, R., Derycke, V., Appenzeller, J. and Avouris, Ph., 2002, Carbon nanotubes as Schottky barrier transistors, Phys. Rev. Lett., 89,106801.

    Article  Google Scholar 

  6. Knoch, J., Mantl, S., Lin, Y. -M., Chen, Z., Avouris, Ph. and Appenzeller, J., 2004, An extended model for carbon nanotube field-effect transistors, Device Research Conf. 2004, Conference Digest, pp. 135-136.

    Google Scholar 

  7. Auth, Ch. and Plummer, J. D., Scaling theory for cylindrical, fully depleted, surrounding gate MOSFET's, IEEE Electron Dev. Lett., 18, 74-76.

    Google Scholar 

  8. Pikus, F. G. and Likharev, K. K., 1997, Nanoscale field-effect transistors: an ultimative size analysis, Appl. Phys. Lett., 71, 3661-3663.

    Article  Google Scholar 

  9. Yan, R. -H., Ourmazd, A. and Lee, K. F., 1992, Scaling the Si MOSFET: From bulk to SOI to bulk, IEEE Trans. Electron Dev., 39, 1704-1710.

    Article  Google Scholar 

  10. Young, K. K., 1989, Short-channel effect in fully-depleted SOI MOSFET's, IEEE Trans. Electron Dev., 36, 399-402.

    Article  Google Scholar 

  11. Datta, S., 1995, Electronic Transport in Mesoscopic Systems, Cambridge University Press.

    Google Scholar 

  12. Datta, S., 2000, Nanoscale device modeling: The Green's function method, Superlatt. Microstructures, 28, 253-278.

    Article  Google Scholar 

  13. Flietner, H., 1972, E(k) relation for 2-band scheme of semiconductors and application to metal-semiconductor contact, Phys. Stat. Solidi, 54, 201-208.

    Article  Google Scholar 

  14. Hatta, E., Nagao, J. and Mukasa, K., 1996, Tunneling through a narrow-gap semiconductor with different conduction and valence band effective masses, J. Appl. Phys., 79, 1511-1514.

    Article  Google Scholar 

  15. Knoch, J., Lengeler, B. and Appenzeller, J., 2002, Quantum simulations of an ultrashort channel single-gated n-MOSFET on SOI, IEEE Trans. Electron Dev., 49, 1212-1218.

    Article  Google Scholar 

  16. Venugopal, R., Paulsson, M., Goasguen, S., Datta, S. and Lundstrom, M. S., 2003, A simple quantum mechanical treatment of scattering in nanoscale transistors, J. Appl. Phys., 93, 5613-5625.

    Article  Google Scholar 

  17. Lake, R., Klimeck, G., Bowen, R. Ch. and Jovanovic, D., 1997, Single and multiband modeling of quantum electron transport through layered semiconductor devices, J. Appl. Phys., 81, 7845-7869.

    Article  Google Scholar 

  18. Fisher, D. S. and Lee, P. A., 1981, Relation between conductivity and transmission matrix, Phys. Rev. B, 23, 6851-6854.

    Article  MathSciNet  Google Scholar 

  19. Sze, S. M., 1981, Physics of Semiconductor Device, John Wiley & Sons, Inc.

    Google Scholar 

  20. Landau, L. D. and Lifshitz, E. M., 1977, Quantum Mechanics, Pergamon Press, Oxford.

    Google Scholar 

  21. Heinze, S., Radosavljevic, M., Tersoff, J. and Avouris, Ph., 2003, Unexpected scaling of performance of carbon nanotube Schottky-barrier transistors, Phys. Rev. B, 68, 235418.

    Article  Google Scholar 

  22. Knoch, J. and Appenzeller, J., 2002, Impact of the channel thickness on the performance of Schottky barrier metal-oxide-semiconductor field-effect transistors, Appl. Phys. Lett., 81, 3082-3084.

    Article  Google Scholar 

  23. Lundstrom, M., 2000, Fundamentals of Carrier Transport, Cambridge University Press.

    Google Scholar 

  24. Lin, Y. -M., Appenzeller, J. and Avouris, Ph., 2004, Novel structures enabling bulk switching in carbon nanotube FETs, Device Research Conf., Conference Digest, 133-134.

    Google Scholar 

  25. Appenzeller, J., Radosavljevic, M., Knoch, J. and Avouris, Ph., 2004, Tunneling versus thermionic emission in one-dimensional semiconductors, Phys. Rev. Lett., 92, 048301.

    Article  Google Scholar 

  26. Luryi, S., 1988, Quantum capacitance devices, Appl. Phys. Lett., 52, 501-503.

    Article  Google Scholar 

  27. John, D. L., Castro, L. C. and Pulfrey, D. L., 2004, Quantum capacitance in nanoscale device modeling, J. Appl. Phys., 96, 5180-5184.

    Article  Google Scholar 

  28. Rahman, A., Guo, J., Datta, S. and Lundstrom, M. S., 2003, Theory of ballistic nanotransistors, IEEE Trans. Electron Dev., 50, 1853-1864.

    Article  Google Scholar 

  29. Taur, Y. and Ning, T. H., 1998, Fundamentals of Modern VLSI Devices, Cambridge University Press.

    Google Scholar 

  30. Guo, J., Datta, S. and Lundstrom, M. S., 2002, Assessment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors, Internat. Electron Dev. Meeting 2002, Technical Digest, 711-714.

    Google Scholar 

  31. Appenzeller, J., Knoch, J., Radosavljevic, M. and Avouris, Ph., 2004, Multimode transport in Schottky barrier carbon nanotube field-effect transistors, Phys. Rev. Lett., 92, 226802.

    Article  Google Scholar 

  32. Radosavljevic, M., Appenzeller, J., Avouris, Ph. and Knoch, J., 2004, High performance of potassium n-doped carbon nanotube field-effect transistors, Appl. Phys. Lett., 84, 3693-3695.

    Article  Google Scholar 

  33. van Wees, B. J., Kouvenhoven, L. P., Willems, E. M. M., Harmans, C. J. P. M., Mooji, J. E., van Houten, H., Beenakker, C. W. J., Williamson, J. G. and Foxon, C. T., 1991, Quantum ballistic and adiabatic electron transport studied with quantum point contacts, Phys. Rev. B, 43, 12431-12453.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Knoch, J., Appenzeller, J. (2006). Carbon Nanotube Field-effect Transistors-The Importance of Being Small. In: Mukherjee, S., Aarts, R.M., Roovers, R., Widdershoven, F., Ouwerkerk, M. (eds) AmIware Hardware Technology Drivers of Ambient Intelligence. Philips Research, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4198-5_18

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4198-5_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4197-6

  • Online ISBN: 978-1-4020-4198-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics