Skip to main content

The incremental response of soils. An investigation using a discrete-element model

  • Chapter
Mathematics and Mechanics of Granular Materials

Abstract

The incremental stress-strain relation of dense packings of polygons is investigated by using moleculardynamics simulations. The comparison of the simulation results to the continuous theories is performed using explicit expressions for the averaged stress and strain over a representative volume element. The discussion of the incremental response raises two important questions of soil deformation: Is the incrementally nonlinear theory appropriate to describe the soil mechanical response? Does a purely elastic regime exist in the deformation of granular materials? In both cases the answer will be “no”. The question of stability is also discussed in terms of the Hill condition of stability for non-associated materials. It is contended that the incremental response of soils should be revisited from micromechanical considerations. A micromechanical approach assisted by discrete element simulations is briefly outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. D. Landau and E.M. Lifshitz, Theory of Elasticity, Volume 7 of Course of Theoretical Physics. Moscow: Pergamon Press (1986) 362pp.

    Google Scholar 

  2. P. A. Vermeer, Non-associated plasticity for soils, concrete and rock. In: H. J. Herrmann, J.-P. Hovi and S. Luding (eds), Physics of Dry Granular Media — NATO ASI Series E350. Dordrecht: Kluwer Academic Publishers (1998) pp. 163–193.

    Google Scholar 

  3. K.H. Roscoe and J.B. Burland, On the generalized stress-strain behavior of ‘wet’ clay. In: J. Heyman and F.A. Leckie (eds), Engineering Plasticity. Cambridge: Cambridge University Press (1968) pp. 535–609.

    Google Scholar 

  4. G. Gudehus, F. Darve and I. Vardoulakis, Constitutive Relations of Soils. Rotterdam: Balkema (1984) pp. 5–12.

    Google Scholar 

  5. P.A. Cundall and O.D.L. Strack, A discrete numerical model for granular assemblages. Géotechnique 29 (1979) 47–65.

    Article  Google Scholar 

  6. K. Bagi, Stress and strain in granular assemblies. Mech. Mater. 22 (1996) 165–177.

    Article  Google Scholar 

  7. P.A. Cundall, A. Drescher and O.D.L. Strack, Numerical experiments on granular assemblies; measurements and observations. In: P. Vermeer and H. Luger (eds), IUTAM Conference on Deformation and Failure of Granular Materials. Delf: Balkema-Rotterdam (1982) pp. 355–370.

    Google Scholar 

  8. C. Goldenberg and I. Goldhirsch, Force chains, microelasticity, and macroelasticity. Phys. Rev. Lett. 89 (2002) 084302.

    Article  ADS  Google Scholar 

  9. K. Bagi, Microstructural stress tensor of granular assemblies with volume forces. J. Appl. Mech. 66 (1999) 934–936.

    Article  Google Scholar 

  10. M. Lätzel, From Discontinuous Models Towards A Continuum Description Of Granular Media. PhD thesis, Universität Stuttgart (2002) 172 pp.

    Google Scholar 

  11. J.P. Bardet, Numerical simulations of the incremental responses of idealized granular materials. Int. J. Plasticity 10 (1994) 879–908.

    Article  MATH  Google Scholar 

  12. Y. Kishino, On the incremental nonlinearity observed in a numerical model for granular media. Ital. Geotech. J. 3 (2003) 3–12.

    Google Scholar 

  13. F. Calvetti, G. Viggiani and C. Tamagnini, Micromechanical inspection of constitutive modeling. In: Pande and Pietruszczak (eds), Constitutive Modeling and Analysis of Boundary Value Problems in Geotechnical Engineering, Benevento: Hevelius Edizioni (2003) pp. 187–216.

    Google Scholar 

  14. M. Oda and K. Iwashita, Study on couple stress and shear band development in granular media based on numerical simulation analyses. Int. J. Engng. Sci. 38 (2000) 1713–1740.

    Article  Google Scholar 

  15. I. Vardoulakis and J. Sulem, Bifurcation Analysis in Geomechanics. London: Blakie Academic & Professional (1995) 462 pp.

    Google Scholar 

  16. R.J. Bathurst and L. Rothenburg, Micromechanical aspects of isotropic granular assemblies with linear contact interactions. J. Appl. Mech. 55 (1988) 17–23.

    Article  Google Scholar 

  17. F. Darve and F. Laouafa, Instabilities in granular materials and application to landslides. Mech. of Cohes. Frict. Mater. 5 (2000) 627–652.

    Article  Google Scholar 

  18. G. Gudehus, A comparison of some constitutive laws for soils under radially symmetric loading and unloading. Can. Geotech. J. 20 (1979) 502–516.

    Google Scholar 

  19. D.C. Drucker and W. Prager, Soil mechanics and plastic analysis of limit design. Q. Appl. Math. 10 (1952) 157–165.

    MathSciNet  MATH  Google Scholar 

  20. R. Nova and D. Wood, A constitutive model for sand in triaxial compression. Int. J. Num. Anal. Meth. Geomech. 3 (1979) 277–299.

    Article  Google Scholar 

  21. K.H. Roscoe, The influence of the strains in soil mechanics. Geotechnique 20 (1970) 129–170.

    Article  Google Scholar 

  22. H.B. Poorooshasb, I. Holubec and A.N. Sherbourne, Yielding and flow of sand in triaxial compression. Can. Geotech. J. 4 (1967) 277–398.

    Article  Google Scholar 

  23. D. M. Wood, Soil Mechanics-transient and cyclic loads. Chichester: John Wiley and Sons Ltd. (1982) 420 pp.

    Google Scholar 

  24. F. Tatsouka and K. Ishihara, Yielding of sand in triaxial compression. Soils Found. 14 (1974) 63–76.

    Google Scholar 

  25. Y.F. Dafalias and E.P. Popov, A model of non-linearly hardening material for complex loading. Acta Mech. 21 (1975) 173–192.

    Article  MATH  Google Scholar 

  26. D. Kolymbas, An outline of hypoplasticity. Arch. Appl. Mech. 61 (1991) 143–151.

    MATH  Google Scholar 

  27. F. Darve, E. Flavigny and M. Meghachou, Yield surfaces and principle of superposition: revisit through incrementally non-linear constitutive relations. Int. J. Plast. 11 (1995) 927–942.

    Article  MATH  Google Scholar 

  28. R. Chambon, J. Desrues, W. Hammad and R. Charlier, CLoE, a new rate type constitutive model for geomaterials. Theoretical basis and implementation. Int. J. Anal. Meth. Geomech. 18 (1994) 253–278.

    Article  MATH  Google Scholar 

  29. W. Wu, E. Bauer and D. Kolymbas, Hypoplastic constitutive model with critical state for granular materials. Mech. Mater. 23 (1996) 45–69.

    Article  Google Scholar 

  30. I. Herle and G. Gudehus, Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mech. Cohes.-Frictl. Matls. 4 (1999) 461–486.

    Article  Google Scholar 

  31. D. Kolymbas, Modern Approaches to Plasticity. Horton: Elsevier (1993) 489 pp.

    Google Scholar 

  32. F. Kun and H.J. Herrmann, Transition from damage to fragmentation in collision of solids. Phys. Rev. E 59 (1999) 2623–2632.

    Article  ADS  Google Scholar 

  33. C. Moukarzel and H.J. Herrmann, A vectorizable random lattice. J. Statist. Phys. 68 (1992) 911–923.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. A. Okabe, B. Boots and K. Sugihara, Spatial Tessellations. Concepts and Applications of Voronoi Diagrams. Wiley Series in probability and Mathematical Statistics. Chichester: John Wiley & Sons (1992) 532 pp.

    MATH  Google Scholar 

  35. H.J. Tillemans and H.J. Herrmann, Simulating deformations of granular solids under shear. Physica A 217 (1995) 261–288.

    Article  ADS  Google Scholar 

  36. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids. Oxford: lOxford University Press (1987). 385 pp.

    MATH  Google Scholar 

  37. E. Buckingham, On physically similar systems: Illustrations of the use of dimensional equations. Phys. Rev. 4 (1914) 345–376.

    Article  ADS  Google Scholar 

  38. T. Marcher and P.A. Vermeer, Macromodeling of softening in non-cohesive soils. In: P.A. Vermeer, S. Diebels, W. Ehlers, H.J. Herrmann, S. Luding and E. Ramm (eds), Continuous and Discontinuous Modeling of Cohesive Frictional Materials. Berlin: Springer (2001) pp. 89–110.

    Chapter  Google Scholar 

  39. J. Desrues, Localisation de la Deformation Plastique dans les Materieux Granulaires. PhD thesis, University of Grenoble (1984).

    Google Scholar 

  40. F. Alonso-Marroquin and H.J. Herrmann, Calculation of the incremental stress-strain relation of a polygonal packing. Phys. Rev. E 66 (2002) 021301.

    Article  ADS  Google Scholar 

  41. F. Alonso-Marroquin and H.J. Herrmann, Ratcheting of granular materials. Phys. Rev. Lett. 92 (2004) 054301.

    Article  ADS  Google Scholar 

  42. Y.F. Dafalias, Bounding surface plasticity. I: Mathematical foundation and hypoplasticity. J. Engng. Mech. 112(9) (1986) 966–987.

    Article  Google Scholar 

  43. P.A. Vermeer, A five-constant model unifying well-established concepts. In: G. Gudehus, F. Darve and I. Vardoulakis (eds), Constitutive Relations of Soils. Rotterdam: Balkema (1984) pp. 175–197.

    Google Scholar 

  44. R. Hill, A general theory of uniqueness and stability in elastic-plastic solids. J. Geotech. Eng. 6 (1958) 239–249.

    Google Scholar 

  45. J.A. Astrom, H.J. Herrmann and J. Timonen, Granular packings and fault zones. Phys. Rev. Lett. 84 (2000) 4638–4641.

    Google Scholar 

  46. F. Alonso-Marroquin, H.J. Herrmann and I. Vardoulakis, Micromechanical investigation of soil plasticity: An investigation using a discrete model of polygonal particles. In: P.A. Vermeer, W. Ehlers, H.J. Herrmann and E. Ramm (eds), Modeling of Cohesive-Frictional Materials. Rotterdan: Balkema (2002) pp. 45–67.

    Google Scholar 

  47. H.-B. Muhlhaus and I. Vardoulakis, The thickness of shear bands in granular materials. Gé otechnique 37 (1987) 271–283.

    Google Scholar 

  48. F. Alonso-Marroquin, S. McNamara and H.J. Herrmann, Micromechanische Untersuchung des granulares Ratchetings. Antrag an die Deutsche Forschungsgemeinschaft, Universität Stuttgart (2003).

    Google Scholar 

  49. G.R. McDowell, M.D. Bolton, and D. Robertson, The fractal crushing of granular materials. J. Mech. Phys. Solids 44 (1996) 2079–2102.

    Article  ADS  Google Scholar 

  50. M.D. Bolton, The role of micro-mechanics in soil mechanics. In: M. Hyodo and Y. Nakata (eds), International Workshop on Soil Crushability. Japan: Yamaguchi University (2002) pp. 166–178.

    Google Scholar 

  51. C. Thornton and D.J. Barnes, Computer simulated deformation of compact granular assemblies. Acta Mech. 64 (1986) 45–61.

    Article  Google Scholar 

  52. S. Luding, Micro-macro transition for anisotropic, frictional granular packings. Int. J. Sol. Struct. 41 (2004) 5821–5836.

    Article  MATH  Google Scholar 

  53. M. Madadi, O. Tsoungui, M. Lätzel and S. Luding, On the fabric tensor of polydisperse granular media in 2D. Int. J. Sol. Struct. 41 (2004) 2563–2580.

    Article  MATH  Google Scholar 

  54. F. Radjai, M. Jean, J.J. Moreau and S. Roux, Force distribution in dense two-dimensional granular systems. Phys. Rev. Lett. 77 (1996) 274–277.

    Article  ADS  Google Scholar 

  55. K. Bagi, Statistical analysis of contact force components in random granular assemblies. Granular Matter 5 (2003) 45–54.

    Article  MATH  Google Scholar 

  56. H.M. Jaeger, S.R. Nagel and R.P. Behringer, Granular solids, liquids and gases. Rev. Mod. Phys. 68 (1996) 1259–1273.

    Article  ADS  Google Scholar 

  57. D. Coppersmith, Model for force fuctuations in bead packs. Phys. Rev. E 53 (1996) 4673–4685.

    Article  ADS  Google Scholar 

  58. S. Roux and F. Radjai, On the state variables of the granular materials. In: H. Aref and J. W. Philips (eds), Mechanics of a New Millenium. Dordrecht: Kluwer (2001) pp. 181–196.

    Google Scholar 

  59. S. Luding. Micro-macro models for anisotropic granular media. In: P.A. Vermeer, W. Ehlers, H.J. Herrmann and E. Ramm, Modeling of Cohesive-Frictional Materials. Rotterdam: Balkema (2004) pp. 195–205.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Alonso-Marroquín, F., Herrmann, H. (2005). The incremental response of soils. An investigation using a discrete-element model. In: Hill, J.M., Selvadurai, A. (eds) Mathematics and Mechanics of Granular Materials. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4183-7_2

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4183-7_2

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3781-8

  • Online ISBN: 978-1-4020-4183-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics