Skip to main content

ADVANCED MODELING OF HIGHCONTRAST PHOTONIC STRUCTURES

  • Conference paper

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 216))

Abstract

choice of methods suitable for modeling high-refractive-index photonic waveguide structures is reviewed. Special attention is paid to methods based on mode matching. Basics of the transfer matrix mode solvers for multilayer structures, the (two-dimensional) bidirectional mode expansion and propagation method, and the film mode matching methods for straight and bent waveguides and circular microresonators with two-dimensional cross-sections are described in some detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Vassallo, Optical waveguide concept, (Elsevier, Amsterdam, 1991).

    Google Scholar 

  2. G. Guekos, ed., Photonic Devices for telecommunications: how to model and measure, (Springer, Berlin, 1998).

    Google Scholar 

  3. A. Taflove and S.C. Hagness, Computational electrodynamics: the finite-difference time-domain method, 2 nd ed., (ArtechHouse, Norwood, 2000).

    Google Scholar 

  4. G.R. Hadley and R.E. Smith, “Full-vector waveguide modeling using an iterative finitedifference method with transparent boundary conditions”, J. Lightwave Technol. 13, 465-469 (1995).

    Article  ADS  Google Scholar 

  5. B.M.A. Rahman and J.B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol. 2, 682-688 (1984).

    Article  ADS  Google Scholar 

  6. 6. S. Selleri, L. Vincetti, A. Cucinotta and M. Zoboli, “Complex FEM modal solver for optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33, 359-371 (2001).

    Article  Google Scholar 

  7. U. Rogge and R. Pregla, “Method of lines for the analysis of dielectric waveguides,” J. Lightwave Technol. 11, 2015-2020 (1993).

    Article  ADS  Google Scholar 

  8. A.S.Sudbø, “Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides,” Pure and Appl. Opt. 2, 211-233 (1993).

    Article  ADS  Google Scholar 

  9. A.S.Sudbø, “Improved formulation of the film mode matching method for mode field calculations in dielectric waveguides,” Pure and Appl. Opt. 3, 381-388 (1994).

    Article  ADS  Google Scholar 

  10. J Chilwell and I Hodgkinson, “Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection prism-loaded waveguides,” J. Opt. Soc. Am. A, 1, 742-753 (1984).

    Article  ADS  Google Scholar 

  11. W.C. Chew, J.M. Jin and E. Michelsen, “Complex coordinate stretching as a generalized absorbing boundary condition,” Microwave and Opt. Technol .Lett. 15, 363-369 (1997).

    Article  Google Scholar 

  12. P. Bienstman, H Derudder, R Baets, F Olyslager and D. De Zutter, “Analysis of cylindrical waveguide discontinuities using vectorial eigenmodes and perfectly matched layers,” IEEE Trans. Microwave Theory Tech. 49, 349-354 (2001).

    Article  ADS  Google Scholar 

  13. G. Sztefka and H-P. Nolting, “Bidirectional eigenmode propagation for large refractive index steps,” IEEE Photonics Technol. Lett. 5, 224-557 (1993).

    Article  Google Scholar 

  14. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33, 327-341 (2001).

    Article  Google Scholar 

  15. M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE. J. Quantum Electron. 11, 75-83 (1975).

    Article  ADS  Google Scholar 

  16. L. Lewin, D. C. Chang and E. F. Kuester, Electromagnetic waves and curved structures, (UK: IEE Press, Peter Peregrinus Ltd., Stevenage, 1977).

    Google Scholar 

  17. W. Pascher and R. Pregla, “Vectorial analysis of bends in optical strip waveguides by the method of lines,” Radio Science 28, 1229-1233 (1993).

    Article  ADS  Google Scholar 

  18. R. Pregla, “The method of lines for the analysis of dielectric waveguide bends,” J. Lightwave Technol. 14, 634-639 (1996).

    Article  ADS  Google Scholar 

  19. W. Pascher, “Modelling of rib waveguide bends for sensor applications,” Opt. Quantum Electron. 33, 433-449 (2001).

    Article  Google Scholar 

  20. L. Prkna, M. Hubálek and J. Čtyroký, “Vectorial eigenmode solver for bent waveguides based on mode matching,” IEEE Photonics Technol. Lett. 16, 2057-2059 (2004).

    Article  ADS  Google Scholar 

  21. L. Prkna, M. Hubálek and J. Čtyroký, “Field Modelling of Circular Microresonators by Film Mode Matching,” IEEE J. Sel. Topics on Quantum Electron. 11, 217-223 (2005).

    Article  Google Scholar 

  22. E. F. Kuester and D. C. Chang, “Propagation, attenuation and dispersion characteristics of inhomogeneous dielectric slab waveguides,” IEEE Trans Microwave Theory Tech. 23, 98-106 (1975).

    Article  ADS  Google Scholar 

  23. J.-P. Bérenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics 114, 185-200 (1994).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. W. C. Chew, J. M. Jin and E. Michielsen, “Complex coordinate stretching as a generalized absorbing boundary condition,” Microwave and Optical Technology Letters 15, 383-369 (1997).

    Google Scholar 

  25. D. Derudder, D. De Zutter and F Olyslager, “Analysis of waveguide discontinuities using perfectly matched layers,” Electron. Lett. 34, 2138-2140 (1998).

    Article  Google Scholar 

  26. J Čtyroký, J. Homola, P. V. Lambeck, S. Musa, H.J.W.M. Hoekstra, R.D. Harris, J.S. Wilkinson, B. Usievich, N.M. Lyndin, “Theory and modelling of optical waveguide sensors utilising surface plasmon resonance,” Sensors and Actuators B 54, 66-73 (1999).

    Article  Google Scholar 

  27. A. Sudbø and P.I. Jensen, “Stable bidirectional eigenmode propagation of optical fields in waveguide devices,” Integrated Photonics Research, 27-29 (OSA, Monterey, 1995).

    Google Scholar 

  28. J. Čtyroký, J. Homola, M. Skalský, “Modelling of surface plasmon resonance waveguide sensor by complex mode expansion and propagation method,” Opt. Quantum Electron. 29, 301-311 (1997).

    Article  Google Scholar 

  29. H. Berends, DBR grating spectral filters for optical waveguide sensors, PhD thesis, (University of Twente, The Netherlands, 1997).

    Google Scholar 

  30. J. Čtyroký, S. Helfert and R. Pregla, “Analysis of a deep waveguide Bragg grating,” Opt. Quantum Electron. 30, 343-358 (1998).

    Article  Google Scholar 

  31. J. Čtyroký, S. Helfert and R. Pregla, “Bragg waveguide grating as a 1D photonic bandgap structure: COST 268 modelling task,” Opt. Quantum Electron. 34, 455-470 (2002).

    Google Scholar 

  32. P. Sanchis, P. Bienstman, B. Luyssaert, R. Baetsand J. Marti, “Analysis of butt coupling in photonic crystals,” IEEE J. Quantum Electron. 40, 541-550 (2004).

    Article  ADS  Google Scholar 

  33. A. Yariv and P. Yeh, Optical Waves in Crystals. (Wiley, New York, 1984).

    Google Scholar 

  34. S.F. Helfert, “Numerical stable determination of Floquet-modes and the application to the computation of band structures,” Opt. Quantum Electron. 36, 87-107 (2004).

    Article  Google Scholar 

  35. J. Petráček, Modelling of optical waveguide structures by the mode matching method, Assoc. Prof. thesis, (Brno Technical University, 2004, in Czech).

    Google Scholar 

  36. D. Joannopoulos, R.D. Meade and J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).

    MATH  Google Scholar 

  37. S.G. Johnson and J.D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis”, Optics Express, 8, 173-190 (2001).

    Article  ADS  Google Scholar 

  38. L. Prkna, Rotationally symmetric resonant devices in integrated optics, PhD thesis, (Charles University in Prague, Czech Republic, 2004).

    Google Scholar 

  39. R.E. Collin, Field theory of guided waves, 2nd ed., (IEEE Press, New York, 1991).

    MATH  Google Scholar 

  40. W. Pascher, Analysis of Waveguide Bends and Circuits by the Method of Lines and the Generalized Multipole Technique, Assoc. Prof. thesis, (FernUniversität Hagen, Germany, 1998).

    Google Scholar 

  41. M. Abramovitz, I.A. Stegun, Handbook of mathematical functions, (National Bureau of Standards, Boulder, 1964).

    Google Scholar 

  42. http://www.photond.com/

  43. http://www.c2v.nl/

  44. http://camfr.sourceforge.net/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Čtyroký, J., Prkna, L., Hubálek, M. (2006). ADVANCED MODELING OF HIGHCONTRAST PHOTONIC STRUCTURES. In: Janz, S., Ctyroky, J., Tanev, S. (eds) Frontiers in Planar Lightwave Circuit Technology. NATO Science Series II: Mathematics, Physics and Chemistry, vol 216. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4167-5_03

Download citation

Publish with us

Policies and ethics