Skip to main content

Active Control for Lightweight Isolation Systems

  • Conference paper
  • 1367 Accesses

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 130))

Abstract

The isolation performance of a scaled three-dimensional active isolation system with a low stiffness isolation table assumed as a large-size, lightweight isolation system is reported. In a large-size but lightweight isolation table, there are multi vibration modes in a lower frequency region in the operational frequency. Thus, a 5-DOF reduced order model of control using a reduced order physical modeling method is applied for effectively controlling multi mode vibration in the vertical direction. In the horizontal direction, a rigid body model is created. For controller design, a 2-DOF controller combining a feedback controller with a feedforward controller is designed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tagawa, Y., Seino, Y., Yasuda, M. and Fujita, T., “Active 6-DOF Micro vibration Control System Using Air Actuators”, in JSME, 2nd International Conference on Motion and Vibration Control (MOVIC), Vol. 1, 1994, pp. 13–18.

    Google Scholar 

  2. Cui, W., Nonami, K. and Kanemitsu, Y., “Isolation Performance of Hybrid Isolation System by H Control and Disturbance Cancellation Control”, in JSME, 3rd International Conference on MOVIC, Vol. 3, 1996, pp. 7–12.

    Google Scholar 

  3. Shono, T., Nagasaka, N., Watanabe, T. and Seto, K., “Multi-Mode Control for an Isolation System with an Elastic Table”, In 6th International Conference on MOVIC, Vol. 1, 2002.

    Google Scholar 

  4. Naruke, M., Nishi, M., Watanabe, T. and Seto, K., “Three-Dimensional Active Control for Lightweight Isolation Table Taken into Account of Vibration in Loaded Structure”, in 7th International Conference on MOVIC, CD-Rom, 2004.

    Google Scholar 

  5. Seto, K. and Mitsuda, S., “New Method for Making a Reduced Order Model of Flexible Structures Using Unobservability and Uncontrollability and Its Application in Vibration Control”, in 1st International Conference on MOVIC, 1992, pp. 152–158.

    Google Scholar 

  6. Ikeda, M. and Yasuda, M., “Double-Active Control of Micro Vibration Isolation Systems to Improve Performances”, The Japan Society of Mechanical Engineers, C, 63–562, 1993, 1694–1701.

    Google Scholar 

  7. Miura, T., Ikeda, M. and Yasuda, M., “Robust Position and Attitude Control of an Active Vibration Isolation”, in 5th International Conference on MOVIC, Vol. 2, 2000, pp. 469–474.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Seto, K., Naruke, M., Watanabe, T., Morino, H. (2005). Active Control for Lightweight Isolation Systems. In: Ulbrich, H., GÜnthner, W. (eds) IUTAM Symposium on Vibration Control of Nonlinear Mechanisms and Structures. Solid Mechanics and its Applications, vol 130. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4161-6_27

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4161-6_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4160-0

  • Online ISBN: 978-1-4020-4161-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics