Advertisement

A Penalty Shooting Walking Machine

Dynamics and Control
  • Hubert Gattringer
  • Hartmut Bremer
Conference paper
Part of the Solid Mechanics and its Applications book series (SMIA, volume 130)

Abstract

In this paper, we consider the dynamical behavior and the control of a two legged Walking Machine. Special investigation is done in the evaluation of the equations of motion. Thus, for obtaining the accelerations of such a tree structured multi-body system, an O(n) algorithm is presented, enhancing the numerical stability. To fulfill the aim of modeling a gaitcycle, contact is opened and closed periodically. Therefore the O(n) algorithm is enhanced for this case. A controller is shown, that balances the robot when doing such highly dynamically processes like shooting a soccer penalty. Simulations and experimental results are presented.

Key words

two legged Walking Machine Zero Moment Point O(n) algorithm unilateral contact 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amos, A., Gerth, W. (2003) Analytic Path Planning Algorithms for Bipedal Robots without a Trunk, Journal of Intelligent and Robotic Systems, Kluwer Academic Publishers, Netherlands, pp. 109–127.Google Scholar
  2. Brandi, H., Johanni, R., Otter, M. (1986) A very efficient algorithm for the simulation of robots and similar multibody systems without inversion of the mass matrix, Proceedings of the IFAC/IFIP/IMACS International Symposium on Theory of Robots, Vienna.Google Scholar
  3. Bremer, H. (1988) Dynamik und Regelung mechanischer Systeme, B.G.Teubner Verlag, Stuttgart.Google Scholar
  4. Bremer, H. (2003) On the use of nonholonomic variables in robotics, World Scientific, Singapore, pp. 1–48.Google Scholar
  5. Caballero, R., Armada, M. A., Akinfiev T. (2004) Robust Cascade Controller for Nonlinearly Actuated Biped Robots: Experimental Evaluation, The International Journal of Robotics Research, Sage Publications, pp. 1075–1095.Google Scholar
  6. Hiller, M., Germann, D., Morgado de Gois, J.A. (2004) Design and control of a quadruped robot walking in unstructered terrain, IEEE Conference on Control Applications, CCAA 2004, Taiwan.Google Scholar
  7. Hirai, K., Hirose, M., Takenaka, T. (1998) The development of Honda humanoid robot, In Proc. IEEE Int. Conf. on Robotics and Automation, Leuven, Belgium, pp. 160–165.Google Scholar
  8. Löffler, K., Gienger, M., Pfeiffer, F. (2001) Simulation and control of a biped jogging robot, In 4th International Conference on Climbing and Walking Robots, Professional Engineering Publishing Limited, London, pp. 867–874.Google Scholar
  9. Löffler, K., Gienger, M., Pfeiffer, F. (2003) Sensors and Control Concept of Walking “Johnnie”, The International Journal of Robotics Research, Sage Publications, pp. 229–239.Google Scholar
  10. Mitterhuber, R., Gattringer, H., Bremer H. (2004) Dynamische Modellierung hybrider Mehrkörpersysteme unter Berücksichtigung numerischer Aspekte, PAMM-Proc. Appl. Math. Mech., Vol. 4, Issue 1, pp. 161–162.Google Scholar
  11. Pfeiffer, F., Glocker, C. (2000) Multibody Dynamics with unilateral Contacts, Springer-Verlag, Wien New York.Google Scholar
  12. Vucobratovic, M., Borovac, B., Surla, D., Stokic, D. (1990) Biped locomotion: dynamics, stability, control and applications, Springer-Verlag, Berlin.Google Scholar
  13. Vucobratovic, M., Potkonjak, V., Tzafestas, S. (2004) Human and Humanoid Dynamics, Journal of Intelligent and Robotic Systems, Kluwer Academic Publishers, Netherlands, pp. 65–84.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Hubert Gattringer
    • 1
  • Hartmut Bremer
    • 1
  1. 1.Institute for RoboticsUniversity of LinzAustria

Personalised recommendations