Advertisement

A Proteomics Perspective on Biocontrol and Plant Defense Mechanism

  • Gurusamy Chinnasamy

Abstract

Plants are invaded by a large number of pathogens and they resist pathogen attacks with preformed defenses and by inducing defense responses. Nature is bestowed with many biocontrol agents including plant growth promoting rhizobacteria (PGPR) and Trichoderma species. PGPR colonise the rhizosphere and regulate plant growth by inducing defense responses in plants via an induced systemic resistance (ISR) and/or a systemic acquired resistance (SAR), increase the availability of nutrients to plants, produce growth hormones, suppress phytopathogens, release volatile compounds, secrete antimicrobial metabolites and decrease phytotoxic microbial communities in the rhizosphere. Trichoderma harzianum controls phytopathogenic fungi by secreting cell wall-degrading enzymes, antibiosis and stimulating plants to produce their own anti-microbial compounds. Though genome sequencing has already been done for some symbiotic and phytopathogenic bacteria, genome sequencing of five PGPR has been only established recently. Agrobacterium radiobacter K84 and four strains of Pseudomonas fluorescens, Pf0-1, Pf-5, Q8r1 and SBW-25, are being sequenced. The utilization of proteomics to explore biocontrol agents and their mechanisms in plant disease management is in the stage of infancy. It has the potential to revolutionize the way research is conducted on the biocontrol agents and plant defense mechanisms. The interaction between a biocontrol agent, a phytopathogen and a plant brings significant changes to the plant proteome and metabolism. Recently, globular and organellar proteomics approaches have been employed to study the changes in plant proteome after treating with biocontrol agent. In addition to biocontrol agents, proteomics studies on plant defense mechanisms against fungal, bacterial and viral pathogens are also discussed.

Key words

biocontrol defense proteins globular proteomics HPLC induced resistance mass spectrometry organellar proteomics PGPR phytopathogen Trichoderma two-dimensional electrophoresis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, G. K., Rakwal, R., Jwa, N., and Agrawal, V. P., 2002, Characterization of a novel rice gene OsATX and modulation of its expression by components of the stress signalling pathways, Physiol. Plant. 116:87–95.CrossRefPubMedGoogle Scholar
  2. Apale, S., Gibbs, B. F., Chinnasamy, G., Masse, R., and Palfree, R. G. E., 2004, Data-mining the peptides of C. elegans, The 4th International Conference of the Canadian Proteomics Initiative, 14–16 May 2004, Montreal, Quebec, Canada.Google Scholar
  3. Bandow, J. E., Brotz, H., Leichert, L. I. O., Labischinski, H., and Hecker, M., 2003, Proteomic approach to understanding antibiotic action, Antimicrob. Agents Chemother. 47:948–955.CrossRefPubMedGoogle Scholar
  4. Bestel-Corre, G., Dumas-Gaudot, E., and Gianinazzi, S., 2004, Proteomics as a tool to monitor plant-microbe endosymbioses in the rhizosphere, Mycorrhiza 14:1–10.CrossRefPubMedGoogle Scholar
  5. Blackstock, W. P., and Weir, M. P., 1999, Proteomics: quantitative and physical mapping of cellular proteins, Trends Biotechnol. 17:121–127.CrossRefPubMedGoogle Scholar
  6. Bloemberg, G. V., and Lugtenberg, B. J. J., 2001, Molecular basis of plant growth promotion and biocontrol by rhizobacteria, Curr. Opin. Plant Biol. 4:343–350.CrossRefPubMedGoogle Scholar
  7. Buell, C. R., Joardar, V., Lindeberg, M., Selengut, J., Paulsen, I. T., Gwinn, M. L., Dodson, R. J., Deboy, R. T., Durkin, A. S., Kolonay, J. F., Madupu, R., Daugherty, S., Brinkac, L., Beanan, M. J., Haft, D. H., Nelson, W. C., Davidsen, T., Zafar, N., Zhou, L., Liu, J., Yuan, Q., Khouri, H., Fedorova, N., Tran, B., Russell, D., Berry, K., Utterback, T., Van Aken, S. E., Feldblyum, T. V., D’Ascenzo, M., Deng, W. L., Ramos, A. R., Alfano, J. R., Cartinhour, S., Chatterjee, A. K., Delaney, T. P., Lazarowitz, S. G., Martin, G. B., Schneider, D. J., Tang, X., Bender, C. L., White, O., Fraser, C. M., and Collmer, A., 2003, The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000, Proc. Natl. Acad. Sci. USA 100:10181–10186.CrossRefPubMedGoogle Scholar
  8. Cahill, D. J., Nordhoff, E., O’Brien, J., Klose, J., Eickoff, H., and Lehrach, H., 2000, Bridging genomics and proteomics, in: Proteomics, S. Pennington and M. Dunn, eds., BIOS Scientific Publishers, Abingdon, pp. 1–17.Google Scholar
  9. Candas, M., Loseva, O., Oppert, B., Kosaraju, P., and Bull Jr, L. A., 2003, Insect resistance to Bacillus thuringiensis, Mol. Cell. Proteomics 2:19–28.PubMedGoogle Scholar
  10. Chinnasamy, G., and Bal, A. K., 2003a, Oleosomes (lipid bodies) in symbiotic nitrogen-fixing perennial root nodules of temperate legumes, Recent Res. Dev. Plant Sci. 1:45–54.Google Scholar
  11. Chinnasamy, G., and Bal, A. K., 2003b, Seasonal changes in abscisic acid concentration of perennial root nodules of beach pea (Lathyrus maritimus [L.] Bigel.), Lathyrus Lathyrism Newslett. 3:10–12.Google Scholar
  12. Chinnasamy, G., and Bal, A. K., 2003c, Seasonal changes in carbohydrates of perennial root nodules of beach pea, J. Plant Physiol. 160:1185–1192.PubMedGoogle Scholar
  13. Chinnasamy, G., Bal, A. K., and McKenzie, D. B., 2003a, Seasonal changes in protein, amino acid and elemental composition of perennial nodules of beach pea, Can. J. Plant Sci. 83:507–514.Google Scholar
  14. Chinnasamy, G., Davis, P. J., and Bal, A. K., 2003b, Seasonal changes in oleosomic lipids and fatty acids of perennial root nodules of beach pea, J. Plant Physiol. 160:355–365.PubMedGoogle Scholar
  15. Chinnasamy, G., Rampitsch, C., and Bykova, N., 2004, Proteomic analysis of transcription factors in the developing wheat seed, The 6th Annual Genomics Meeting of Agriculture and Agri-Food Canada, 2–4 June 2004, Ottawa, Ontario, Canada.Google Scholar
  16. Cooper, B., Eckert, D., Andon, N. L., Yates III, J. R., and Haynes, P. A., 2003, Investigative proteomics: identification of an unknown plant virus from infected plants using mass spectrometry, J. Am. Soc. Mass Spectr. 14:736-741.Google Scholar
  17. da Silva, A. C. R., Ferro, J. A., Reinach, F. C., Farah, C. S., Furlan, L. R., Quaggio, R. B., Monteiro-Vitorello, C. B., Van Sluys, M. A., Almeida, N. F., Alves, L. M. C., Do Amaral, A. M., Bertolini, M. C., Camargo, L. E. A., Camarotte, G., Cannavan, F., Cardozo, J., Chambergo, F., Ciapina, L. P., Cicarelli, R. M. B., Coutinho, L. L., Cursino-Santos, J. R., El-Dorry, H., Faria, J. B., Ferreira, A. J. S., Ferreira, R. C. C., Ferro, M. I. T., Formighieri, E. F., Franco, M. C., Greggio, C. C., Gruber, A., Katsuyama, A. M., Kishi, L. T., Leite, R. P., Lemos, M. V. F., Locali, E. C., Machado, M. A., Madeira, A. M. B. N., Martinez-Rossi, N. M., Martins, E. C., Meidanis, J., Menck, C. F. M., Miyaki, C. Y., Moon, D. H., Moreira, L. M., Novo, M. T. M., Okura, V. K., Oliveira, M. C., Oliveira, V. R., Pereira, H. A., Rossi, A., Sena, J. A. D., Silva, C., De Souza, R. F., Spinola, L. A. F., Takita, M. A., Tamura, R. E., Teixeira, E. C., Tezza, R. I. D., Trindade Dos Santos, M., Truffi, D., Tsai, S. M., White, F. F., Setubal, J. C., and Kitajima, J. P., 2002, Comparison of the genomes of two Xanthomonas pathogens with differing host specificities, Nature 417:459–463.PubMedGoogle Scholar
  18. Djordjevic, M. A., 2004, Sinorhizobium meliloti metabolism in the root nodule: a proteomic perspective, Proteomics 4:1859–1872.CrossRefPubMedGoogle Scholar
  19. Doumbou, C. L., Salove, M. K. H., Crawford, D. L., and Beaulieu, C., 2001, Actinomycetes, promising tools to control plant diseases to promote plant growth, Phytoprotection 82:85–102.Google Scholar
  20. Dreger, M., 2003, Subcellular proteomics, Mass Spectr. Rev. 22:27–56.Google Scholar
  21. Durrant, W. E., and Dong, X., 2004, Systemic acquired resistance, Annu. Rev. Phytopathol. 42:185–209.CrossRefPubMedGoogle Scholar
  22. Erwin, D. C., and Ribeiro, O. K., 1996, Phytophthora Diseases World-wide, American Phytopathological Society Press, St. Paul, p. 562.Google Scholar
  23. Fravel, D. R., 1988, Role of antibiosis in the biocontrol of diseases, Annu. Rev. Phytopathol. 26:75–91.Google Scholar
  24. Galibert, F., Finan, T. M., Long, S. R., Pühler, A., Abola, P., Ampe, F., Barloy-Hubler, F., Barnett, M. J., Becker, A., Boistard, P., Bothe, G., Boutry, M., Bowser, L., Buhrmester, J., Cadieu, E., Capela, D., Chain, P., Cowie, A., Davis, R. W., Dréano, S., Federspiel, N. A., Fisher, R. F., Gloux, S., Godrie, T., Goffeau, A., Golding, B., Gouzy, J., Gurjal, M., Hernandez-Lucas, I., Hong, A., Huizar, L., Hyman, R. W., Jones, T., Kahn, D., Kahn, M. L., Kalman, S., Keating, D. H., Kiss, E., Komp, C., Lelaure, V., Masuy, D., Palm, C., Peck, M. C., Pohl, T. M., Portetelle, D., Purnelle, B., Ramsperger, U., Surzycki, R., Thébault, P., Vandenbol, M., Vorhölter, F. J., Weidner, S., Wells, D. H., Wong, K., Yeh, K. C., and Batut, J., 2001, The composite genome of the legume symbiont Sinorhizobium meliloti, Science 293:668–672.PubMedGoogle Scholar
  25. Gao, H., Beckman, C. H., and Mueller, W. C., 1995, The nature of tolerance to Fusarium oxysporum f. sp. lycopersici in polygenically field-resistant mar-blobe tomato plants, Physiol. Mol. Plant Pathol. 46:401–412.Google Scholar
  26. Goodner, B., Hinkle, G., Gattung, S., Miller, N., Blanchard, M., Qurollo, B., Goldman, B. S., Cao, Y., Askenazi, M., Halling, C., Mullin, L., Houmiel, K., Gordon, J., Vaudin, M., Iartchouk, O., Epp, A., Liu, F., Wollam, C., Allinger, M., Doughty, D., Scott, C., Lappas, C., Markelz, B., Flanagan, C., Crowell, C., Gurson, J., Lomo, C., Sear, C., Strub, G., Cielo, C., and Slater, S., 2001, Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58, Science 294:2323–2328.CrossRefPubMedGoogle Scholar
  27. Graves, P. R., and Haystead, T. A. J., 2002, Molecular biologist’s guide to proteomics, Microbiol. Mol. Biol. Rev. 66:39–63.PubMedGoogle Scholar
  28. Grinyer, J., McKay, M., Herbert, B. R., and Nevalainen, H., 2004a, Fungal proteomics: mapping the mitochondrial proteins of a Trichoderma harzianum strain applied for biocontrol, Curr. Genet. 45:170–175.PubMedGoogle Scholar
  29. Grinyer, J., McKay, M., Nevalainen, H., and Herbert, B. R., 2004b, Fungal proteomics: initial mapping of biological control strain Trichoderma harzianum, Curr. Genet. 45:163–169.PubMedGoogle Scholar
  30. Gurusamy, C., Bal, A. K., and McKenzie, D. B., 1999, Nodulation of beach pea (Lathyrus maritimus [L.] Bigel.) induced by different strains of rhizobia, Can. J. Plant Sci. 79:239–242.Google Scholar
  31. Gurusamy, C., Davis, P. J., and Bal, A. K., 2000, Seasonal changes in perennial nodules of beach pea (Lathyrus maritimus [L.] Bigel.) with special reference to oleosomes, Int. J. Plant Sci. 161:631–638.CrossRefGoogle Scholar
  32. Harman, G. E., 2000, The dogmas and myths of biocontrol. Changes in perceptions based on research with Trichoderma harzianum T-22, Plant Dis. 84:377–393.Google Scholar
  33. Harman, G. E., and Kubicek, C. P., 1998, Trichoderma and Gliocladium, Volume 2, Enzymes, Biological Control and Commercial Applications, Taylor and Francis, London, p. 393.Google Scholar
  34. Harman, G. E., Howell, C. R., Viterbos, A., Chet, I., and Lorito, M., 2004a, Trichoderma species — opportunistic, avirulent plant symbionts, Nat. Rev. Microbiol. 2:43–56.CrossRefPubMedGoogle Scholar
  35. Harman, G. E., Petzoldt, R., Comis, A., and Chen, J., 2004b, Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola, Phytopathology 94:147–153.Google Scholar
  36. Hoa, L. T., Nomura, M., Kajiwara, H., Day, D. A., and Tajima, S., 2004, Proteomic analysis of symbiotic differentiation of mitochondria in soybean nodules, Plant Cell Physiol. 45:300–308.CrossRefGoogle Scholar
  37. Kaneko, T., Nakamura, Y., Sato, S., Asamizu, E., Kato, T., Sasamoto, S., Watanabe, A., Idesawa, K., Ishikawa, A., Kawashima, K., Kimura, T., Kishida, Y., Kiyokawa, C., Kohara, M., Matsumoto, M., Matsuno, A., Mochizuki, Y., Nakayama, S., Nakazaki, N., Shimpo, S., Sugimoto, M., Takeuchi, C., Yamada, M., and Tabata, S., 2000, Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti, DNA Res. 7:331–338.PubMedGoogle Scholar
  38. Kaneko, T., Nakamura, Y., Sato, S., Minamisawa, K., Uchiumi, T., Sasamoto, S., Watanabe, A., Idesawa, K., Iriguchi, M., Kawashima, K., Kohara, M., Matsumoto, M., Shimpo, S., Tsuruoka, H., Wada, T., Yamada, M., and Tabata, S., 2002, Complete genome sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110, DNA Res. 9:189–197.PubMedGoogle Scholar
  39. Kazemi-Pour, N., Condemine, G., and Hugouvieux-Cotte-Pattat, N., 2004, The secretome of the plant pathogenic bacterium Erwinia chrysanthemi, Proteomics 4:3177–3186.CrossRefPubMedGoogle Scholar
  40. Keon, J., Curtis, R., Cabrera, H., and Hargreaves, J., 2003, A genomics approach to crop pest and disease research, Pest Manage. Sci. 59:143–148.CrossRefGoogle Scholar
  41. Kim, S. T., Cho, K. S., Yu, S., Kim, S. G., Hong, J. C., Han, C., Bae, D. W., Nam, M. H., and Kang, K. Y., 2003, Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension-cultured rice cells, Proteomics 3:2368–2378.PubMedGoogle Scholar
  42. Kim, S. T., Kim, S. G., Hwang, D. H., Kang, S. Y., Kim, H. J., Lee, B. H., Lee, J. J., and Kang, K. Y., 2004, Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea, Proteomics 4:3569–3578.PubMedGoogle Scholar
  43. Kloepper, J. W., and Schroth, M. N., 1978, Plant growth-promoting rhizobacteria on radishes, in: Proceedings of the 4th International Conference on Plant Pathogenic Bacter, Volume 2, Station de Pathologie Vegetale et Phytobacteriologie, INRA, Angers, France, pp. 879–882.Google Scholar
  44. Knox, O. G. G., Killham, K., and Leifert, C., 2000, Effects of increased nitrate availability on the control of plant pathogenic fungi by the soil bacterium Bacillus subtilis, Appl. Soil Ecol. 15:227–231.CrossRefGoogle Scholar
  45. Konishi, H., Ishiguro, K., and Komatsu, S., 2001, A proteomics approach towards understanding blast fungus infection of rice grown under different levels of nitrogen fertilization, Proteomics 1:1162–1171.CrossRefPubMedGoogle Scholar
  46. Langlois, P., Bourassa, S., Poirier, G. G., and Beaulieu, C., 2003, Identification of Streptomyces coelicolor proteins that are differentially expressed in the presence of plant material, Appl. Environ. Microb. 69:1884–1889.CrossRefGoogle Scholar
  47. Lecourieux-Ouaked, F., Pugin, A., and Lebrun-Garcia, A., 2000, Phosphoproteins involved in the signal transduction of cryptogein, an elicitor of defense reactions in tobacco, Mol. Plant Microbe Interact. 13:821–829.PubMedGoogle Scholar
  48. Lee, M., Qi, M., and Yang, Y., 2001, A novel jasmonic acid-inducible rice myb gene associates with fungal infection and host cell death, Mol. Plant Microbe Interact. 14:527–535.PubMedGoogle Scholar
  49. Lewis, J. K., Bendahmane, M., Smith, T. J., Beachy, R. N., and Siuzdak, G., 1998, Identification of viral mutants by mass spectrometry, Proc. Natl. Acad. Sci. USA 95:8596–8601.PubMedGoogle Scholar
  50. Liu, L., White, M. J., and MacRae, T. H., 1999, Transcription factors and their genes in higher plants — functional domains, evolution and regulation, Eur. J. Biochem. 262:247–257.CrossRefPubMedGoogle Scholar
  51. Lorito, M., Farkas, V., Rebuffat, S., Bodo, B., and Kubicek, C. P., 1996, Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum, J. Bacteriol. 178:6382–6385.PubMedGoogle Scholar
  52. Lorito, M., Hayes, C. K., Zoina, A., Scala F., Del Sorbo, G., Woo, S. L., and Harman, G. E., 1994, Potential of genes and gene products from Trichoderma sp. and Gliocladium sp. for the development of biological pesticides, Mol. Biotechnol. 2:209–217.PubMedGoogle Scholar
  53. Loschelder, H., Homann, A., Ogrzewalla, K., and Link, G., 2004, Proteomics-based sequence analysis of plant gene expression-the chloroplast transcription apparatus, Phytochemistry 65:1785–1793.CrossRefPubMedGoogle Scholar
  54. Martin, G. B., Bogdanove, A. J., and Sessa, G., 2003, Understanding the functions of plant disease resistance proteins, Annu. Rev. Plant Biol. 54:23–61.CrossRefPubMedGoogle Scholar
  55. Mathesius, U., Mulders, S., Gao, M., Teplitski, M., Caetano-Annolles, G., Rolfe, B. G., and Bauer, W. D., 2003, Extensive and specific responses of a eukaryote to bacterial quorumsensing signals, Proc. Natl. Acad. Sci. USA 100:1444–1449.CrossRefPubMedGoogle Scholar
  56. Matthews, R. E. F., 1991, Plant Virology, Academic Press, San Diego, p. 835.Google Scholar
  57. McDonald, W. H., and Yates III, J. R., 2000, Proteomic tools for cell biology, Traffic 1:747–754.CrossRefPubMedGoogle Scholar
  58. Mehta, A., and Rosato, Y. B., 2001, Differentially expressed proteins in the interaction of Xanthomonas axonopodis pv. citri with leaf extract of the host plant, Proteomics 1:1111–1118.CrossRefPubMedGoogle Scholar
  59. Melin, P., Schnurer, J., and Wagner, E. G. H., 2002, Proteome analysis of Aspergillus nidulans reveals proteins associated with the response to the antibiotic concanamycin A, produced by Streptomyces species, Mol. Genet. Genom. 267:695–702.Google Scholar
  60. Mes, J. J., van Doorn, A. A., Wijbrandi, J., Simons, G., Cornelissen, B. J., and Haring, M. A., 2000, Expression of the Fusarium resistant genes I-2 colonizes with the site of fungal containment, Plant J. 23:183–194.CrossRefPubMedGoogle Scholar
  61. Mew, T. W., Leung, H., Savary, S., Vera Cruz, C. M., and Leach, J. E., 2004, Looking ahead in rice disease research and management, Crit. Rev. Plant Sci. 23:103–127.Google Scholar
  62. Natera, S. H. A., Guerreiro, N., and Djordjevic, M. A., 2000, Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis, Mol. Plant. Microbe Interact. 13:995–1009.PubMedGoogle Scholar
  63. Ndimba, B. K., Chivasa, S., Hamilton, J. M., Simon, W. J., and Slabas, A. R., 2003, Proteomic analysis of changes in the extracellular matrix of Arabidopsis cell suspension cultures induced by fungal elicitors, Proteomics 3:1047–1059.CrossRefPubMedGoogle Scholar
  64. Palfree, R. G. E., Chinnasamy, G., Zougman, A., Aguiar, M., Masse, R., and Gibbs, B. F., 2003, Systematic characterization of C. elegans polypeptides, The 51st American Society for Mass Spectrometry Conference on Mass Spectrometry and Allied Topics, 8–12 June, 2003, Montreal, Quebec, Canada.Google Scholar
  65. Pandey, A., and Mann, M., 2000, Proteomics to study genes and genomes, Nature 405:837–846.PubMedGoogle Scholar
  66. Patterson, S. D., and Aebersold, R. H., 2003, Proteomics: the first decade and beyond, Nat. Genet. Suppl. 33:311–323.Google Scholar
  67. Patton, W. F., 2002, Detection technologies in proteome analysis, J. Chromatogr. 771:3–31.Google Scholar
  68. Peck, S. C., Nuhse, T. S., Hess, D., Iglesias, A., Meins, F., and Boller, T., 2001, Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors, Plant Cell 13:1467–1475.CrossRefPubMedGoogle Scholar
  69. Perret, X., Staehelin, C., and Broughton, W. J., 2000, Molecular basis of symbiotic promiscuity, Microbiol. Mol. Biol. Rev. 64:180–201.PubMedGoogle Scholar
  70. Persello-Cartieaux, E., Nussaume, L., and Robaglia, C., 2003, Tales from the underground: molecular plant-rhizobia interactions, Plant Cell Environ. 26:189–199.CrossRefGoogle Scholar
  71. Phizicky, E., Bastiaens, P. I., Zhu, H., Snyder, M., and Fields, S., 2003, Protein analysis on a proteomic scale, Nature 422:208–215.CrossRefPubMedGoogle Scholar
  72. Pieterse, C. M. J., and van Loon, L. C., 1999, Salicylic acid-independent plant defense pathways, Trends Plant Sci. 4:52–58.CrossRefPubMedGoogle Scholar
  73. Ping, L., and Boland, W., 2004, Signals from the underground: bacterial volatiles promote growth in Arabidopsis, Trends Plant Sci. 9:263–266.CrossRefPubMedGoogle Scholar
  74. Puhler, A., Arlat, M., Becker, A., Gottfert, M., Morrissey, J. P., and O’Gara, F., 2004, What can bacterial genome research teach us about bacteria-plant interactions?, Curr. Opin. Plant Biol. 7:137–147.PubMedGoogle Scholar
  75. Ramonell, K. M., and Somerville, S., 2002, The genomics parade of defense responses: to infinity and beyond, Curr. Opin. Plant Biol. 5:291–294.CrossRefPubMedGoogle Scholar
  76. Rep, M., Dekker, H. L., Vossen, J. H., de Boer, A. D., Houterman, P. M., Speijer, D., Back, J. W., de Koster, C. G., and Cornelissen, B. J. C., 2002, Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato, Plant Physiol. 130:904–917.CrossRefPubMedGoogle Scholar
  77. Riechmann, J. L., and Ratcliffe, O. J., 2000, A genomic perspective on plant transcription factors, Curr. Opin. Plant Biol. 3:423–434.CrossRefPubMedGoogle Scholar
  78. Rodriguez, H., and Fraga, R., 1999, Phosphate solubilizing bacteria and their role in plant growth promotion, Biotechnol. Adv. 17:319–339.PubMedGoogle Scholar
  79. Rolfe, B. G., Mathesius, U., Djordjevic, M., Weinman, J., Hocart, C., Weiller, G., and Dietz Bauer, W., 2003, Proteomic analysis of legume-microbe interactions, Comp. Funct. Genom. 4:225–228.CrossRefGoogle Scholar
  80. Romeis, T., 2001, Protein kinases in the plant defense response, Curr. Opin. Plant Biol. 4:407–414.CrossRefPubMedGoogle Scholar
  81. Rosen, R., Sacher, A., Shechter, N., Becher, D., Buttner, K., Biran, D., Hecker, M., and Ron, E. Z., 2004, Two-dimensional reference map of Agrobacterium tumifaciens proteins, Proteomics 4:1061–1073.PubMedGoogle Scholar
  82. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., and Pare, P. W., 2004, Bacterial volatiles induce systemic resistance in Arabidopsis, Plant Physiol. 134:1017–1026.CrossRefPubMedGoogle Scholar
  83. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W., and Kloepper, J. W., 2003, Bacterial volatiles promote growth in Arabidopsis, Proc. Natl. Acad. Sci. USA 100:4927–4932.PubMedGoogle Scholar
  84. Saalbach, G., Erik, P., and Wienkoop, S., 2002, Characterisation by proteomics of peribacteroid space and peribacteroid membrane preparations from pea (Pisum sativum) symbiosomes, Proteomics 2:325–337.CrossRefPubMedGoogle Scholar
  85. Salanoubat, M., Genin, S., Artiguenave, F., Gouzy, J., Mangenot, S., Arlat, M., Billault, A., Brottier, P., Camus, J. C., Cattolico, L., Chandler, M., Choisne, N., Claudel-Renard, C., Cunnac, S., Demange, N., Gaspin, C., Lavie, M., Moisan, A., Robert, C., Saurin, W., Schiex, T., Siguier, P., Thebault, P., Whalen, M., Wincker, P., Levy, M., Weissenbach, J., and Boucher, C. A., 2002, Genome sequence of the plant pathogen Ralstonia solanacearum, Nature 415:497–502.CrossRefPubMedGoogle Scholar
  86. Salekdeh, G. H., Siopongco, J., Wade, L. J., Ghareyazie, B., and Bennett, J., 2002, A proteomic approach to analyzing drought-and salt-responsiveness in rice, Field Crops Res. 76:199–219.CrossRefGoogle Scholar
  87. She, Y. M., Haber, S., Seifers, D. L., Loboda, A., Chernushevich, I., Perreault, H., Ens, W., and Standing, K. G., 2001, Determination of the complete amino acid sequence for the coat protein of brome mosaic virus by time-of-flight mass spectrometry. Evidence for mutations associated with change of propagation host, J. Biol. Chem. 276:20039–20047.CrossRefPubMedGoogle Scholar
  88. Shepherd, S. J., Van West, P., and Gow, N. A. R., 2003, Proteomic analysis of asexual development of Phtophthora palmivora, Mycol. Res. 107:395–400.CrossRefPubMedGoogle Scholar
  89. Simpson, A. J. G., Reinach, F. C., Arruda, P., Abreu, F. A., Acencio, M., Alvarenga, R., Alves, L. M. C., Araya, J. E., Baia, G. S., Baptista, C. S., Barros, M. H., Bonaccorsi, E. D., Bordin, S., Bove, J. M., Briones, M. R. S., Bueno, M. R. P., Camargo, A. A., Camargo, L. E. A., Carraro, D. M., Carrer, H., Colauto, N. B., Colombo, C., Costa, F. F., Costa, M. C. R., Costa-Neto, C. M., Coutinho, L. L., Cristofani, M., Dias-Neto, E., Docena, C., El-Dorry, H., Facincani, A. P., Ferreira, A. J. S., Ferreira, V. C. A., Ferro, J. A., Fraga, J. S., Franca, S. C., Franco, M. C., Frohme, M., Furlan, L. R., Garnier, M., Goldman, G. H., Goldman, M. H. S., Gomes, S. L., Gruber, A., Ho, P. L., Hoheisel, J. D., Junqueira, M. L., Kemper, E. L., Kitajima, J. P., Krieger, J. E., Kuramae, E. E., Laigret, F., Lambais, M. R., Leite, L. C. C., Lemos, E. G. M., Lemos, M. V. F., Lopes, S. A., Lopes, C. R., Machado, J. A., Machado, M. A., Madeira, A. M. B. N., Madeira, H. M. F., Marino, C. L., Marques, M. V., Martins, E. A. L., Martins, E. M. F., Matsukuma, A. Y., Menck, C. F. M., Miracca, E. C., Miyaki, C. Y., Monteiro-Vitorello, C. B., Moon, D. H., Nagai, M. A., Nascimento, A. L. T. O., Netto, L. E. S., Nhani Jr., A., Nobrega, F. G., Nunes, L. R., Oliveira, M. A., De Oliveira, M. C., De Oliveira, R. C., Palmieri, D. A., Paris, A., Peixoto, B. R., Pereira, G. A. G., Pereira Jr., H. A., Pesquero, J. B., Quaggio, R. B., Roberto, P. G., Rodrigues, V., Rosa, A. J. D. M., De Rosa, Jr., V. E., De Sa, R. G., Santelli, R. V., Sawasaki, H. E., Da Silva, A. C. R., Da Silva, A. M., Da Silva, F. R., Silva, W. A., Da Silveira, J. F., Silvestri, M. L. Z., Siqueira, W. J., De Souza, A. A., De Souza, A. P., Terenzi, M. F., Truffi, D., Tsai, S. M., Tsuhako, M. H., Vallada, H., Van Sluys, M. A., Verjovski-Almeida, S., Vettore, A. L., Zago, M. A., Zatz, M., Meidanis, J., and Setubal, J. C., 2000, The genome sequence of the plant pathogen Xylella fastidiosa, Nature 406:151–157.PubMedGoogle Scholar
  90. Simpson, R. J., 2003, Proteins and Proteomics: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, p. 926.Google Scholar
  91. Simpson, R. J., 2004, Purifying Proteins for Proteomics: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, p. 801.Google Scholar
  92. Singh, K. B., Foley, R. C., and Onate-Sanchez, L., 2002, Transcription factors in plant defense and stress response, Curr. Opin. Plant Biol. 5:430–436.CrossRefPubMedGoogle Scholar
  93. Singh, V. K., Jayaswal, R. K., and Wilkinson, B. J., 2001, Cell wall-active antibiotic induced proteins of Staphylococcus aureus identified using a proteomic approach, FEMS Microbiol. Lett. 199:79–84.PubMedGoogle Scholar
  94. Sivasithamparam, K., and Ghisalberti, E. L., 1998, Secondary metabolism in Trichoderma and Gliocladium, in: Trichoderma and Gliocladium, Volume 1, Basic Biology, Taxonomy and Genetics, C. P. Kubicek, and G. E. Harman, eds., Taylor and Francis, London, pp. 139–191.Google Scholar
  95. Smolka, M. B., Martins, D., Winck, F. V., Santoro, C. E., Castellari, R. R., Ferrari, F., Brum, I. J., Galembeck, E., Filho, H. D. C., Machado, M. A., Marangoni, S., and Novello. J. C., 2003, Proteome analysis of the plant pathogen Xylella fastidiosa reveals major cellular and extracellular proteins and a peculiar codon bias distribution, Proteomics 3:224–237.CrossRefPubMedGoogle Scholar
  96. Sonawane, A., Klöppner, U., Hövel, S., Völker, U., and Röhm, K., 2003, Identification of Pseudomonas proteins coordinately induced by acidic amino acids and their amides: a two-dimensional electrophoresis study, Microbiology 149:2909–2918.CrossRefPubMedGoogle Scholar
  97. Stohl, E. A., Milner, J. L., and Handelsman, J., 1999, Zwittermicin A biosynthetic cluster, Gene 237:403–411.CrossRefPubMedGoogle Scholar
  98. Tahara, S. T., Mehta, A., and Rosato, Y. B., 2003, Proteins induced by Xanthomonas axonopodis pv. passiflorae with leaf extract of the host plant (Passiflorae edulis), Proteomics 3:95–102.CrossRefPubMedGoogle Scholar
  99. Taylor, S. W., Fahy, E., and Ghosh, S. S., 2003, Global organellar proteomics, Trends Biotechnol. 21:82–88.CrossRefPubMedGoogle Scholar
  100. Van Sluys, M. A., Montero-Vitorello, C. B., Camargo, L. E. A., Menck, C. F. M., da Silva, A. C. R., Ferro, J. A., Oliveira, M. C., Setubal, J. C., Kitajiman, J. P., and Simpson, A. J., 2002, Comparative genomic analysis of plant-associated bacteria, Annu. Rev. Phytopathol. 40: 169–189.PubMedGoogle Scholar
  101. Ventelon-Debout, M., Delalande, F., Brizard, J., Dorsselaer, A. V., and Brugidou, C., 2004, Proteome analysis of cultivar-specific deregulations of Oryza sativa indica and O. sativa japonica cellular suspensions undergoing rice yellow mottle virus infection, Proteomics 4:216–225.CrossRefPubMedGoogle Scholar
  102. von Bodman, S. B., Dietz Bauer, W., and Coplin, D. L., 2003, Quorum sensing in plantpathogenic bacteria, Annu. Rev. Phytopathol. 41:455–482.Google Scholar
  103. Walling, L. L., 2001, Induced resistance: from the basic to the applied, Trends Plant Sci. 6:445–447.CrossRefGoogle Scholar
  104. Wasinger, V. C., Cordwell, S. J., Cerpa-Poljak, A., Yan, J. X., Gooley, A. A., Wilkins, M. R., Duncan, M. W., Harris, R., Williams, K. L., and Humphery-Smith, I., 1995, Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium, Electrophoresis 16:1090–1094.CrossRefPubMedGoogle Scholar
  105. Weidner, S., Puhler, A., and Kuster, H., 2003, Genomics insights into symbiotic nitrogen fixation, Curr. Opin. Biotechnol. 14:200–205.CrossRefPubMedGoogle Scholar
  106. Westermeier, R., and Naven, T., 2002, Proteomics in Practice: A Laboratory Manual of Proteome Analysis, Wiley-VCH, Weinheim and Cambridge, p. 316.Google Scholar
  107. Wienkoop, S., and Saalbach, G., 2003, Proteome analysis. Novel proteins identified at the peribacteroid membrane from Lotus japonicus root nodules, Plant Physiol. 131:1080–1090.CrossRefPubMedGoogle Scholar
  108. Wilkins, M. R., Sanchez, J. C., Gooley, A. A., Appel, R. D., Humphery-Smith, I., Hochstrasser, D. F., and Williams, K. L., 1995, Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it, Biotechnol. Genet. Eng. Rev. 13:19–50.Google Scholar
  109. Woo, S. L., 2003, Identifying biocontrol genes in Trichoderma spp. and mechanisms for activating biocontrol processes, The 8th International Congress of Plant Pathology, Christchurch, New Zealand Abstracts, 268.Google Scholar
  110. Wood, D. W., Setubal, J. C., Kaul, R., Monks, D. E., Kitajima, J. P., Okua, V. K., Zhou, Y., Chen, L., Wood, G. E., Almeida Jr., N. F., Woo, L., Chen, Y., Paulsen, I. T., Eisen, J. A., Karp, P. D., Bovee Sr., D., Chapman, P., Clendenning, J., Deatherage, G., Gillet, W., Grant, C., Kutyavin, T., Levy, R., Li, M. J., McClelland, E., Palmieri, A., Raymond, C., Rouse, G., Saenphimmachak, C., Wu, Z., Romero, P., Gordon, D., Zhang, S., Yoo, H., Tao, Y., Biddle, P., Jung, M., Krespan, W., Perry, M., Gordon-Kamm, B., Liao, L., Kim, S., Hendrick, C., Zhao, Z. Y., Dolan, M., Chumley, F., Tingey, S. V., Tomb, J. F., Gordon, M. P., Olson, M. V., and Nester, E. W., 2001, The genome of the natural genetic engineer Agrobacterium tumefaciens C58, Science 294:2317–2323.CrossRefPubMedGoogle Scholar
  111. Xing, T., Ouellet, T., and Miki, B. L., 2002, Towards genomic and proteomic studies of protein phosphorylation in plant-pathogen interactions, Trends Plant Sci. 7:224–230.CrossRefPubMedGoogle Scholar
  112. Yang, E. J., Oh, Y. A., Lee, E. S., Park, A. R., Cho, S. K., Yoo, Y. J., and Park, O. K., 2003, Oxygen-evolving enhancer protein 2 is phosphorylated by glycine-rich protein 3/wallassociated kinase 1 in Arabidopsis, Biochem. Biophys. Res. Commun. 305:862–868.PubMedGoogle Scholar
  113. Yedidia, I., Benhamou, N., and Chet, I., 1999, Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum, Appl. Environ. Microbiol. 65:1061–1070.PubMedGoogle Scholar
  114. Yedidia, I., Benhamou, N., Kapulnik, Y., and Chet, I., 2000, Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203, Plant Physiol. Biochem. 38:863–873.CrossRefGoogle Scholar
  115. Zaitlin, M., and Palukaitis, P., 2000, Advances in understanding plant viruses and virus diseases, Annu. Rev. Phytopathol. 38:117–143.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Gurusamy Chinnasamy
    • 1
  1. 1.Institut de Recherche en Biologie VégétaleUniversité de MontréalMontréalCanada

Personalised recommendations