Biosynthesis of Antibiotics by PGPR and its Relation in Biocontrol of Plant Diseases

  • W. G. Dilantha Fernando
  • S. Nakkeeran
  • Yilan Zhang


Plant growth promoting rhizobacteria (PGPR) play a vital role in crop protection, growth promotion and in the improvement of soil health. Some well known PGPR strains are Pseudomonas, Bacillus, Azospirillum, Rhizobium, and Serratia species. The primary mechanism of biocontrol by PGPR involves the production of antibiotics such as phenazine-1-carboxyclic acid, 2,4-diacetyl phloroglucinol, oomycin, pyoluteorin, pyrrolnitrin, kanosamine, zwittermycin-A, and pantocin. A cascade of endogenous signals such as sensor kinases, N-acyl homoserine lactones and sigma factors regulates the synthesis of antibiotics. The genes responsible for the synthesis of antibiotics are highly conserved. The antibiotics pertain to polyketides, heterocyclic nitrogenous compounds and lipopeptides have broad-spectrum action against several plant pathogens, affecting crop plants. In addition to direct antipathogenic action, they also serve as determinants in triggering induced systemic resistance (ISR) in the plant system. Though antibiotics play a vital role in disease management, their role in biocontrol is questioned due to constraints of antibiotic production under natural environmental conditions. Environmental and other factors that suppress the antimicrobial action of antibiotics have to be studied to exploit the potential of antibiotics of PGPR in crop protection.

Key words

antibiotics biocontrol PGPR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbas, A., Morrisey, J. P., Marquez, P. C., Sheehan, M. M., Delany, I. R., and O’Gara, F., 2002, Characterization of interaction between the transcriptional repressor PhlF and its binding site at the phlA promoter in Pseudomonas fluorescens F113. J. Bacteriol. 184:3008–3016.CrossRefPubMedGoogle Scholar
  2. Aino, M., Maekawa, Y., Mayama, S., and Kato, H., 1997, Biocontrol of bacterial wilt of tomato by producing seedlings colonized with endophytic antagonistic pseudomonads, in: Plant Growth Promoting Rhizobacteria, Present status and future prospects, A, Ogoshi., K. Kobayashi., Homma, Y., Kodama, F., kondo, N. and Akino, S. (eds.), Sapporo, Jpn., Nakanishi Printing, pp. 120–123.Google Scholar
  3. Andersen, J. B., Koch, B., Nielsen, T. H., Sorensen, D., Hansen, M., Nybroe, O., Christophersen, C., Sorensen, J., Molin, S., and Givskov, M., 2003, Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Microbiology 149: 37–46.CrossRefPubMedGoogle Scholar
  4. Anjaiah, V., Koedam, N., Nowak-Thompson, B., Loper, J. E., Hofte, M., Tambong, J. T., and Cornelis, P., 1998, Involvemnet of phenazines and anthranilate in the antagonism of Pseudomonas. aeruginosa PNA1 and Tn5 derivatives towards Fusarium spp. and Pythium spp. Mol. Plant-Microb. Interact. 11: 847–854.Google Scholar
  5. Arima, K., Imanaka, I., Kousaka, M., Fukuta, A., and Tamura, G.,1964, Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas. Agric. Biol. Chem. 28: 575–576.Google Scholar
  6. Asaka, O., and Shoda, M., 1996, Biocontrol of R. solani damping off of tomato with B. subtilis RB14. Appl. Environ. Microbiol. 11: 4081–4085.Google Scholar
  7. Askeland, R. A., and Morrison, S. M., 1983, Cyanide production by Pseudomonas. fluorescens and Pseudomonas aeruginosa. Appl. Environ. Microbiol. 45: 1802–1807.PubMedGoogle Scholar
  8. Audenaert, K., Pattery, T., Cornelis, P., and Hofte, M., 2001, Mechanisms of Pseudomonas. aeruginosa-induced pathogen resistance in plants. In: Chablain, P., Cornelis, P.[eds]. Pseudomonas 2001 Abstracts book. Brussels, Belgium: Vrije Universiteit Brussel, pp 36.Google Scholar
  9. Audenaert, K., Pattery, T., Cornelis, P., and Höfte, M., 2002, Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol. Plant-Microb. Interact. 15: 1147–1156.Google Scholar
  10. Bangera, M. G., and Thomashaw, L. S., 1996, Characterization of a genomic locus required for synthesis of the antibiotic 2,4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2-87. Mol. Plant-Microb. Interact. 9: 83–90.Google Scholar
  11. Banks, R. M., Donald, A. C., Hannan, P. C., O’Hanlon, P. J., and Ragers, N. H., 1998, Antimycoplasmal activities of the pseudomonic acids and structure-activity relationships of monic acid A derivatives. J. Antibiot. 41: 609–613.Google Scholar
  12. Baron, S. S., and Rowe, J. J., 1981, Antibiotic action of pyocyanin. Antimicrob Agents. Chemother. 20: 814–820.Google Scholar
  13. Becker, J. O., Heper, C. A., Yuen, G. Y., van Gundy, S. D., Schroth., M. N., Hancock., J. G., Weinhold., A. R., and Bowman, T., 1990, Effect of rhizobacteria and metham-sodium on growth and root microflora of celery cultivars. Phytopathology 80: 206–211.Google Scholar
  14. Bencini, D. A., Howell, C. R., and Wild, J. R., 1983, Production of phenolic metabolites by a soil pseudomonad. Soil Biol. Biochem. 15: 491–492.CrossRefGoogle Scholar
  15. Bender, C. L., Rangaswamy, V., and Loper, J. E., 1999, Polyketide production by plantassociated pseudomonads. Annu. Rev. Phytopathol. 37:175–196.CrossRefPubMedGoogle Scholar
  16. Besson, F., and Michel, G., 1987, Isolation and characterization of new iturin: Iturin D and iturin E. J. Antibiot. 40: 437–442PubMedGoogle Scholar
  17. Besson, F., and Michel. G., 1992, Biosynthesis of bacillomycin D activating enzymes by the use of affinity chromatography. FEBS Lett. 308: 18–21.CrossRefPubMedGoogle Scholar
  18. Blumer, C., Heeb, S., Pessi, G., and Haas, D., 1999, Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding site. Proc. Natl.Acad. Sci., USA 96: 14073–14078.CrossRefPubMedGoogle Scholar
  19. Burkhead, K. D., Schisler, D. A., and Slininger, P. J., 1994, Pyrrolnitrin production by biological control agent Pseudomonas cepacia B37w in culture and in colonized wounds of potatoes. Appl. Environ. Microbiol. 60: 2031–2039.PubMedGoogle Scholar
  20. Calhoun, D. H., Carson., M., and Jensen, R. A., 1972, The branch point metabolic for pyocyanin biosynthesis in Pseudomonas aeruginosa. J. Gen. Microbiol. 72: 581–583.PubMedGoogle Scholar
  21. Castric, P., 1994, Influence of oxygen on the Pseudomonas aeruginosa hydrogen cyanide synthase. Curr. Microbiol. 29: 19–21.CrossRefGoogle Scholar
  22. Castric, P. A., 1977, Glycine metabolism by Pseudomonas aeruginosa: hydrogen cyanide biosynthesis. J. Bacteriol., 130: 826–831.PubMedGoogle Scholar
  23. Chancey, S. T., Wood, D. W., and Pierson, L. S., 1999, Two component transcriptional regulation of N-acyl homoserine lactone production in Pseudomonas aureofaceins. Appl. Environ. Microbiol. 65: 2294–2299.PubMedGoogle Scholar
  24. Chang, C. J., 1981, The biosynthesis of the antibiotic pyrrolnitrin by Pseudomonas. aureofaceins. J. Antibiot. 24: 555–566.Google Scholar
  25. Chernin, L., Brandis, A., Ismailov, Z., and Chet, I., 1996, Pyrrolnitrin production by an Enterobacter agglomerans strain with a broad spectrum of antagonistic activity towards fungal and bacterial phytopathogens. Curr. Microbiol. 32: 208–212.Google Scholar
  26. Chin A-Woeng, T. F. C., Bloemberg, G. V., and Lugtenberg, B. J. J., 2003, Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol. 157: 503–523.Google Scholar
  27. Chin-A-Woeng, T. F. C, Thomas-Oates, J. E., Lugtenberg, B. J. J., and Bloemberg, G. V., 2001, Introduction of the phzH gene of Pseudomonas chlororaphis PCL 1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. Strains. Mol. Plant-Microbe Interact. 14: 1006–1015.PubMedGoogle Scholar
  28. Chin-A-Woeng, T. F. C., Bloemberg, G. V., van der Bij, A. J., van der Drift, K. M. G. M., Schripsema, J., Kroon B., Scheffer, R. J., Keel C., Bakker, P. A. H. M., De Bruijn, F. J., Thomas-Oates, J. E., and Lugtenberg, B. J. J., 1998, Biocontrol by phenazine-1-carboxamide producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f.sp. radicis-lycopersici. Mol. Plant-Microbe Interact. 10: 79–86.Google Scholar
  29. Chitarra, G. S., Breeuwer, P., Nout, M. J. R., Aelst, A. C. van Rombouts, F. M., and Abee, T., 2003, An antifungal compound produced by B. subtilis YM 10-20 inhibits germination of Penicillium. roqueforti conidiospores. J. Appl. Microbiol. 94: 159–166.CrossRefPubMedGoogle Scholar
  30. Constantinescu, F., 2001, Extraction and identification of antifungal metabolites produced by some B. subtilis strains. Analele Institutului de Cercetari Pentru Cereale Protectia Plantelor 31: 17–23.Google Scholar
  31. Cook, R.J., and Baker, K. F., 1983, The nature and practice of biological control of plant pathogens. APS Press, St. Paul.Google Scholar
  32. Cronin, D., MoenneLoccoz, Y., Fenton, A., Dunne, C., Dowling, D.N., and O’Gara., F., 1997, Role of 2,4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis. Appl. Environ. Microbiol. 63: 1357–1361.Google Scholar
  33. Cuppels, D. A., Howell, C. R., Stipanovic, R. D., Stossel, A., and Stothers, J. B., 1986, Biosynthesis of pyoluteorin: a mixed polyketide-tricarboxylic acid cycle origin demonstrated by [1,2-13C2] acetate incorporation. Z. Naturforsch. 41: 532–536.Google Scholar
  34. de Souza, J., and Raaijmakers, J. M., 2003, Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp. FEMS. Microbiol.Ecol. 43: 21–34.Google Scholar
  35. de Souza, J., Arnould, C., Deulvot, C., Lamanceau, P., Pearson, V. G., and Raaijmakers, J. M., 2003, Effect of 2,4 diacetyl phloro glucinol on Pythium: Cellular responses and variation in sensitivity among propagules and species. Phytopathology 93: 966–975.Google Scholar
  36. Delaney, S. M., Mavrodi, D. V., Bonsall, R. F., and Thomashow, L. S., 2001, phzO, a gene for biosynthesis of 2-hydroxylate phenazine compounds in Pseudomonas auerofacines 30–84. J. Bacteriol. 183: 5376–5384.CrossRefGoogle Scholar
  37. Delany, I., Sheenan, M. M., Fenton, A., Bardin, S., Aarons, S., and O’Gara, F., 2000, Regulation of production of the antifungal metabolite 2,4-diacetylphloroglucinol in Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor. Microbiology 146: 537–543.PubMedGoogle Scholar
  38. Duffy, B. K., and Défago, G., 1997, Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87: 1250–1257.Google Scholar
  39. Duffy, B. K., and Défago, G., 1999, Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 65: 2429–2438.PubMedGoogle Scholar
  40. Duville, Y., and Boland, G. L., 1992, A note on the antibiotic properties of B. subtilis against Colletotrichum trifoli. Phytoprotection 73: 31–36.Google Scholar
  41. Elander, R. P., Mabe, J. A., Hamill, R. H., and Gorman, M., 1968, Metabolism of tryptophans by Pseudomonas aureofaceins. VI. Production of pyrrolnitrin by selected Pseudomonas spp. Appl. Environ.Microbiol. 16: 753–758.Google Scholar
  42. Elasri, M., Delorme, S., Lamanceau, P., Stewart. G., Laue, B., Glickmann, E., Oger, P. M., and Dessaux., Y., 2001, Acyl — homoserine lactone production is more common among plant — associated Pseudomonas spp. Appl. Environ. Microbiol. 67: 1198–1209.CrossRefPubMedGoogle Scholar
  43. El-Banna, N., and Winkelmann, G., 1988, Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes. J. Appl. Microbiol. 85: 69–78.Google Scholar
  44. Elizabeth, A. S., Milner, J. L., and Handelsman, J., 1999, Zwittermicin A biosynthetic cluster. Gene. 237: 430–411.Google Scholar
  45. Emmert, B. A. E., Klimowicz, K. A., Thomas, G. M., and Handelsman, J., 2004, Genetics of zwittermicin A production by Bacillus cereus. Appl. Environ. Microbiol. 70:104–113.CrossRefPubMedGoogle Scholar
  46. Eshita, S. M., Roberto, N. H., Beale, J. M., Mamiya, B. M., and Workman, R. F., 1995, Bacillomycin L a new antibiotic of the iturin group: isolation, structures and antifungal activities of the congeners. J. Antibiot. 48: 1240–1247.PubMedGoogle Scholar
  47. Fenton, A. M., Stephens, P. M., Crowley, J., Ocallaghan, M., and O’Gara, F., 1992, Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Appl. Environ. Microbiol. 58: 3873–3878.PubMedGoogle Scholar
  48. Fernando, W. G. D., Ramarathnam, R., Krishnamoorthy, A. S., and Savchuk, S., 2004, Identification and use of bacterial organic volatiles in biological control of Sclerotinia. sclerotiorum. Soil Biol. Biochem. 36 (in press)Google Scholar
  49. Fravel, D. R., 1988, Role of antibiosis in the biocontrol of plant diseases. Annu. Rev. Phytopathol. 26: 75–91.Google Scholar
  50. Fuller, A. T., Mellows, G., Woolford, M. Banks, G. T., Barrow, K. D., and Chain, E. B., 1971, Pseudomonic acid: an antibiotic produced by Pseudomonas fluorescens. Nature 234: 416–417.CrossRefPubMedGoogle Scholar
  51. Fuqua, W. C., Winans, S. C., and Greenberg, E. P., 1994, Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176:269–275.PubMedGoogle Scholar
  52. Gamard, P., Sauriol, F., Benhamou, N., Belanger, R. R., and Paulitz, T. C., 1997, Novel butyrolactones with antifungal activity produced by Pseudomonas aureofaciens strain 63-28. J. Antibiot. 50: 742–749.PubMedGoogle Scholar
  53. Gealy, D. R., Gurusiddaiah, S., and Ogg, A. G., 1996, Isolation and characterization of metabolites from Pseudomonas syrigae strain 3366 and their phytotoxicity against certain weed and crop species. Weed Science 44: 383–392.Google Scholar
  54. Georgakopoulos, D., Hendson, M., Panopoulos, N. J., and Schroth, M. N., 1994, Cloning of a phenazine biosynthetic locus of Pseudomonas aureofaciens PGS12 and analysis of its expression in vitro with the ice nucleation reporter gene. Appl. Environ. Microbiol. 60: 2931–2938.PubMedGoogle Scholar
  55. Gerard, J., R., Lloyd, T., Barsby, P., Haden, M., Kelly, T., and Andersen, R. J., 1997. Massetolides A-H, antimycobacterial cyclic depsipeptides produced by two pseudomonads isolated from marine habitats. J. Nat. Prod. 60: 223–229.CrossRefPubMedGoogle Scholar
  56. Giacomodonato, M. N., Pettinari, M. J., Souto, G. I., Mendez, B. S., and Lopez, N. I., 2001, A PCRbased method for the screening of bacterial strains with antifungal activity in suppressive soybean rhizosphere. World J. Microbiol. Biotech. 17: 51–55.Google Scholar
  57. Givskov, M., Östling, J., Eberl, L., Lindum, P., Christensen, A. B., Christiansen, G., Molin, S., and Kjelleberg, S., 1998, Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J. Bacteriol. 180: 742–745.PubMedGoogle Scholar
  58. Haas, D., and Keel, C., 2003, Regulation of antibiotic production in root colonizing Pseudomonas spp., and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 79: 117–153.Google Scholar
  59. Haas, D., Blumer, C., and Keel, C., 2000, Biocontrol ability of fluorescent pseudomonads genetically dissected: importance of positive feedback regulation. Curr. Opin. Biotechnol. 11: 209–297.CrossRefGoogle Scholar
  60. Hamill, R. L., Elander, R. P., Mabe, J. A., and Goreman, M., 1970, Metabolism of tryptophans by Pseudomonas aureofaceins V. Conversion of tryptophan to pyrrolnitrin. Appl. Environ. Microbiol. 19: 721–725.Google Scholar
  61. Hammer, P. E., Hill, D. S., Lam, S. T., van Pee, K. H., and Ligon, J. M., 1997, Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl. Environ. Microbiol. 63: 2147–2154.PubMedGoogle Scholar
  62. Hammer, P. E., and Evensen, K. B., 1993, Post harvest control of Botrytis cinerea on cut flowers with pyrrolnitrin. Plant Dis. 77: 283–286.Google Scholar
  63. Hammer, P. E., Burd, W., Hill, D. S., Ligon, J. M., and van Pee, K.H., 1999, Conservation of the pyrrolnitrin gene cluster among six pyrrolnitrin-producing strains. FEMS Microbiol. Lett. 180: 39–44.PubMedGoogle Scholar
  64. Hassett, D. J., Woodruff, W. A., Wozniak, D. J., Vasil, M. L., Cohen, M. S., and Ohman, D. E., 1993, Cloning of sodA and sodB genes encoding manganese and iron superoxide dismutase in Pseudomonas aeruginosa: demonstration of increased manganese superoxide dismutase activity in alginate-producing bacteria. J. Bacteriol. 175: 7658–7665.PubMedGoogle Scholar
  65. Hassett, D.J., Charniga, L., Bean, K., Ohman, D. E., and Cohen, M. S., 1992, Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstration of manganese-cofactored superoxide dismutase. Infection and Immunity 60: 328–336.PubMedGoogle Scholar
  66. He, H., Silo-Suh, L. A., Handelsman, J., and Clardy, J., 1994, ZwittermicinA, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Lett. 35: 2499–2502.Google Scholar
  67. Heeb, S., and Haas, D., 2001, Regulatory roles of GacS-GacA two component system in plant associated and other Gram-negative bacteria. Mol. Plant-Microb. Interact. 14: 1351–1363.Google Scholar
  68. Henriksen, A., Anthoni, U.,. Nielsen, T. H., Sørensen, J., Christophersen, C., and Gajhede, M., 2000, Cyclic lipoundecapeptide Tensin from Pseudomonas fluorescens strain 96.578. Acta Crystallogr. C 56: 113–115.Google Scholar
  69. Hiradate, S., Yoshida, S., Sugie, H., Yada, H., and Fujii, Y., 2002, Mulberry anthracnose antagonists (iturin) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61: 693–698.CrossRefPubMedGoogle Scholar
  70. Hokeberg, M., Wright, S. A. I., Svensson, M., Lundgren, L. N., and Gerhardson, B., 1998, Mutants of Pseudomonas chlororaphis defective in the production of an antifungal metabolite express reduced biocontrol activity. Abstract Proceedings ICPP98, Edinburgh, Scotland.Google Scholar
  71. Homma, Y., Sato, Z., Hirayama, F., Konno, K., Shirahama, H., and Suzui. T.,1989, Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilborne plant pathogens. Soil Biol. Biochem. 21:723–728.Google Scholar
  72. Howell, C. R., and Stipanovic, R. D., 1979, Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69:480–482.Google Scholar
  73. Howell, C. R., and Stipanovic, R. D., 1980, Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70:712–715.Google Scholar
  74. Howie, W. J., and Suslow, T. V., 1991, Role of antibiotic biosynthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens. Mol. Plant-Microb. Interact. 4: 393–399.Google Scholar
  75. Hughes, J., and Mellows, G., 1980, Interaction of pseudomonic acid A with Escherichia coli B isoleucyl-tRNA synthetase. Biochemistry Journal 191: 209–219.Google Scholar
  76. Ingledew, W. M., and Campbell, J. J. R., 1969, Evaluation of shikimic acid as a precursor of pyocyanin. Can. J. Microbiol. 15: 535–541.PubMedGoogle Scholar
  77. Janisiewicz, W. J., and Roitman, J., 1988, Biological control of blue mold and grey mold on apple and pear with Pseudomonas cepacia. Phytopathology 78: 1697–1700.Google Scholar
  78. Jiao, Y., Yoshihara, T., Ishikuri, S., Uchino, H., and Ichihara, A., 1996, Structural identification of cepaciamide A, a novel fungitoxic compound from Pseudomonas cepacia D-202. Tetrahedron Lett. 37: 1039–1042.CrossRefGoogle Scholar
  79. Kajimura, Y., Sugiyama, M., and Kaneda, M., 1995, Bacillopeptins, a news cyclic lipopetide antibiotics from B. subtilis FR-2. J. Antibiot. 48: 1095–1103.PubMedGoogle Scholar
  80. Kang, Y. W., Carlson, R., Tharpe, W., and Schell, M. A., 1998, Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Appl. Environ. Microbiol. 64: 3939–3947.PubMedGoogle Scholar
  81. Katz, E., and Demain, A. L., 1977, The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol. Rev. 41: 449–474.PubMedGoogle Scholar
  82. Katz, L., and Donadio, S., 1993, Polyketide synthesis: Prospects for hybrid antibiotics. Annu. Rev. Microbiol. 47: 875–912.CrossRefPubMedGoogle Scholar
  83. Kavitha, K., Nakkeeran, S., Chandrasekar, G., Fernando, W. G. D., Mathiyazhagan, S., Renukadevi, P., and Krishnamoorthy, A. S., 2003, Role of Antifungal Antibiotics, Siderophores and IAA production in biocontrol of Pythium aphanidermatum inciting damping off in tomato by Pseudomonas chlororaphis and Bacillus subtilis. In proceedings of the 6th International workshop on PGPR, Organised by IISR, Calicut 5–10 October, 2003, pp. 493–497.Google Scholar
  84. Keel, C., Schiner, U., Maurhofer, M., Voisard, C., Laville, J., Burger, U., Wirthner, P., Haas, D., and Defago, G., 1992, Suppression of root diseases by Pseudomonas. fluorescens CHA0: Importance of the bacterial secondary metabolite 2,4-Diacetylphloroglucinol. Mol. Plant-Microbe Interact. 5: 4–13.Google Scholar
  85. Keel, C., Weller, D. M., Natsch, A., Défago, G., Cook, R. J., and Thomashow, L. S., 1996, Conservation of the 2,4-diacetylphloroglycinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Appl. Environ. Microbiol. 62:552–563.PubMedGoogle Scholar
  86. Keel, U. S., Seematter, A., Maurhofer, M., Blumer, C., Duffy, B., Bonnefoy, C. G., Reimmann, C., Notz, R., Défago, G., Haas, D., and Keel, C., 2000, Autoinduction of 2, 4-Diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J. Bacteriol. 182:1215–1225.PubMedGoogle Scholar
  87. Kim, B. S., Lee, J. Y., and Hwang, B. K., 2000, In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Manage. Sci. 56: 1029–1035.CrossRefGoogle Scholar
  88. Kitten, T., Kinscherf, T., McEvoy, G., and Willis, D. K., 1998, A newly identified regulator is required for virulence and toxin production in Pseudomonas syringae. Mol. Microbiol. 28:917–929.CrossRefPubMedGoogle Scholar
  89. Koch, B., Nielsen, T. H., Sorensen, D., Andersen, J. B., Christophersen, C., Molin, S., Givskov, M., Sorensen, J., and Nybroe, O., 2002, Lipopeptide production in Pseudomonas sp. strain DSS73 is regulated by components of sugar beet exudates via the Gac twocomponent regulatory system. Appl. Environ. Microbiol. 68: 4509–4516CrossRefPubMedGoogle Scholar
  90. Kojic, M., and Venturi, V., 2001, Regulation of rpoS Gene Expression in Pseudomonas: Involvement of a TetR Family Regulator. J. Bacteriol. 183: 3712–3720.CrossRefPubMedGoogle Scholar
  91. Kowall, M. J., Vastes, J., Kluge, B., Stein, T., Franke, P., and Ziessow, D., 1998, Separation and characterization of surfactin isoforms produced by B. subtilis OKB 105. J. Colloid Interface Sci. 203: 1–8.Google Scholar
  92. Lampis, G., Deidda, D., Maullu, C., Petruzzelli, S., and Pompei, R., 1996, Karalicin, a new biologically active compound from Pseudomonas fluorescens/putida. I. Production, isolation, physico-chemical properties and structure elucidation. J. Antibiot. 49: 260–262.PubMedGoogle Scholar
  93. Lange, R., Fischer, D. and Hengge-Aronis, R. 1995. Identification of transcriptional start sites and the role of ppGpp in the expression of rpoS, the structural gene for the sigma S subunit of RNA polymerase in Escherichia coli. J. Bacteriol. 177: 4676–4680.PubMedGoogle Scholar
  94. Lee, J. Y., Moon, S. S. and Hwang, B. K. 2003. Isolation and Antifungal and Antioomycete Activities of Aerugine Produced by Pseudomonas fluorescens Strain MM-B16. Appl. Environ. Microbiol. 69: 2023–2021.PubMedGoogle Scholar
  95. Leeman, M., van Pelt, J. A., Den Ouden, F. M., Heinsbroek, M., Bakker, P. A. H. M. and Schippers B. 1995. Induction of systemic resistance against fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85: 1021–1027.Google Scholar
  96. Ligon, J. M., Hill, D. S., Hammer, P. E., Torkewitz, N. R., Hofmann, D., Kempf, H. J. and van Pee, K.H. 2000. Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest. Manage. Sci. 56: 688–695.CrossRefGoogle Scholar
  97. Lindum, P., Anthoni, U., Christophersen, C., Eberl, L., Molin, S., and Givskov, M., 1998, NAcyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. J. Bacteriol. 180: 6384–6388.PubMedGoogle Scholar
  98. Liu, M. Y., and Romeo, T., 1997, The global regulator CsrA of Escherichia coli is a specific mRNA binding protein. J. Bacteriol. 177: 2663–2672.Google Scholar
  99. Ma, W., Chui, Y., Liu, Y., Dunenyo, C. K., Mukherjee, A., and Chaterjee, A. K., 2001, Molecular characterization of global regulatory RNA species that control pathogenecity factors in Erwinia amylovora and Erwinia herbicola pv. Gypsophilae, J. Bacteriol. 183:1870–1880.PubMedGoogle Scholar
  100. Mackie, A. E., and Wheatley, R. E., 1999, Effects of the incidence of volatile organic compound interactions between soil bacterial and fungal isolates. Soil Biol. Biochem. 31:375–385.CrossRefGoogle Scholar
  101. Marahiel, M. A., Stacelhaus, T., and Mootz, H. D., 1997, Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem. Rev. 97: 2651–2673.CrossRefPubMedGoogle Scholar
  102. Maurhofer, M., Baehler, E., Notz, R., Martinez, V., and Keel, C., 2004, Cross talk between 2,4-Diacetylphloroglucinol — producing biocontrol pseudomonads on wheat roots. Appl. Environ. Microbiol. 70:1990–1998.CrossRefPubMedGoogle Scholar
  103. Maurhofer, M., Keel, C., Schnider, U., Voisard, C., Haas, D., and Defago G., 1992, Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology 82: 190–195.Google Scholar
  104. Mavrodi, D. V., Ksenzenko, V. N., Bonsall, R. F., Cook, R. J., Boronin, A. M., and Thomashow, L. S., 1998, A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2–79. J. Bacteriol. 180: 2541–2548.PubMedGoogle Scholar
  105. Mavrodi, D.V., Bleimling, N., Thomashow, L.S., and Blankenfeldt, W., 2004, The purification, crystallization and preliminary structural characterization of PhzF, a key enzyme in the phenazine-biosynthesis pathway from Pseudomonas fluorescens 2–79. Acta Crystallogr D Biol Crystallogr. 60:184–186.PubMedGoogle Scholar
  106. Mavrodi, O. V., McSpadden Gardener, B. B., Mavrodi, D. V., Bonsall, R. F., Weller, D. M., and Thomashow, L. S., 2001, Genetic diversity of phlD from 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. Phytopathology 91: 35–43.Google Scholar
  107. Mazzola, M., Cook, R. J., Thomashow, L. S, Weller, D. M., and Pierson, L. S., 1992, Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl. Environ. Microbiol. 58: 2616–2624.PubMedGoogle Scholar
  108. McDonald, M., Mavrodi, D. V., Thomashow, L. S., and Floss, H. G., 2001, Phenazine biosynthesis in Pseudomonas fluorescens: Branchpoint from the primary shilimate biosynthetic pathway and role of phenazine-1,6-dicarboxylic acid. J. Amer. Chem. Socie. 123: 9459–9460.Google Scholar
  109. McLoughlin, T. J., Quinn, J. P., Betterman, A., and Bookland, R., 1992, Pseudomonas fluorescens suppression of sunflower wilt fungus and role of antifungal compounds in controlling the disease. Appl. Environ. Microbiol. 58: 1760–1763.PubMedGoogle Scholar
  110. McSpadden Gardener, B. B., Mavrodi, D. V., Thomashow, L. S., and Weller, D. M., 2001, A rapid polymerase chain reaction-based assay for characterizing rhizosphere populations of 2, 4-Diacetylphloroglucinol-producing bacteria. Phytopathology 91: 44–54.Google Scholar
  111. McSpadden Gardener, B. B., Schroeder, K. L., Kalloger, S. E., Raaijmakers, J. M., Thomashow, L. S., and Weller, D. M., 2000, Genotypic and phenotypic diversity of phlDcontaining Pseudomonas strains isolated from the rhizosphere of wheat. Appl. Environ. Microbiol. 66:1939–1946..CrossRefPubMedGoogle Scholar
  112. Miller, C. M., Miller, R. V., Kenny, D. G., Redgrave, B., Sears, J., Condron, M. M., Teplow, D.B., and Strobel, G.A., 1998, Ecomycins, unique antimycotics from Pseudomonas viridiflava. J. Appl. Microbiol. 84: 937–944.CrossRefPubMedGoogle Scholar
  113. Milner, J. L., Silo-Suh, L., Lee, J. C., He, H. Y., Clardy, J., and Handelsman, J., 1996, Production of kanosamine by Bacillus cereus UW85. Appl. Environ. Microbiol. 62: 3061–3065.PubMedGoogle Scholar
  114. Moyne, A. L., Shalby, R., Cleveland, T. E., and Tuzun, S., 2001, Bacillomycin, D, an iturin with antifungal activity against Aspergillus flavus.. J. Appl. Microbiol. 90: 622–629.CrossRefPubMedGoogle Scholar
  115. Nakajima, H., Sato, B., Fujita, T., Takase, S., Terano, H., and Okuhara M., 1996, New antitumor substances, FR901463, FR901464 and FR90 1465. I. Taxonomy, fermentation, isolation, physicochemical properties and biological activities. J. Antibiot. 49: 1196–1203.PubMedGoogle Scholar
  116. Nakatsu, C. H., Straus, N. A., and Wijndham, C., 1995, The nucleotide sequence of the TN6271 3-chlorobenzoate 3,4-dioxygenase genes (cbaAB) unites the class IA oxygenases in a single lineage. Microbiology 141: 485–495.PubMedGoogle Scholar
  117. Nakayama, T., Homma, Y., Hashidoko, Y., Mizutani, J., and Tahara, S., 1999, Possible role of xanthobaccins produced by Stenotrophomonas sp strain SB-K88 in suppression of sugar beet damping-off disease. Appl. Environ. Microbiol. 55: 4334–4339.Google Scholar
  118. Nakkeeran, S., Kavitha, K., Mathiyazhagan, S., Fernando, W.G.D., Chandrasekar, G., and Renukadevi, P., 2004, Induced systemic resistance and plant growth promotion by Pseudomonas chlororaphis strain PA-23 and Bacillus subtilis strain CBE4 against rhizome rot of turmeric (Curcuma longa L.). Can. J. Plant Pathol. 26: 417–418Google Scholar
  119. Nielsen, M. N., Sorensen, J., Fels, J., and Pedersen, H. C., 1998, Secondary metabolite-and endochitinase-dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl. Environ. Microbiol. 64: 3563–3569.PubMedGoogle Scholar
  120. Nielsen, T. H., Christophersen, C., Anthoni, U., and Sorensen, J., 1999, Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J. Appl. Microbiol. 86: 80–90.Google Scholar
  121. Nielsen, T. H., Thrane, C., Christophersen, C., Anthoni, U., and Sorensen, J., 2000, Structure, production characteristics and fungal antagonism of tensin—a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J. Appl. Microbiol. 89: 992–1001.CrossRefPubMedGoogle Scholar
  122. Nielsen, T. H., Sorensen, D., Tobiasen, C., Andersen, J. B., Christophersen, C., Givskov, M., and Sorensen, J., 2002, Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl. Environ. Microbiol. 68: 3416–3423.PubMedGoogle Scholar
  123. Nishida, M., Matsubara, T., and Watanabe, N., 1965, Pyrrolnitrin, a new antifungal antibiotic. Microbiological and toxicological observations. J. Antibiot. 18: 211–219.PubMedGoogle Scholar
  124. Notz, R., Maurhofer, M., Dubach, H., Haas, D., and Défago, G., 2002, Fusaric acid producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthesis gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of the wheat. Appl. Environ. Microbiol. 68: 2229–2235.CrossRefPubMedGoogle Scholar
  125. Notz, R., Maurhofer, M., Schnider-Keel, U., Duffy, B., Haas, D., and Défago, G., 2001, Biotic factors affecting expression of the 2,4-diacetylpholoroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology 91: 873–881.Google Scholar
  126. Nowak-Thompson, B., Chaney, N., Wing, J. S., Gould, S. J., and Loper, J. E., 1999, Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J. Bacteriol. 181:2166–2174.PubMedGoogle Scholar
  127. Nowak-Thompson, B., Gould, S. J., Kraus, J., and Loper, J., 1994, Production of 2,4-Diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5. Can. J. Microbiol. 40:1064–1066.Google Scholar
  128. Ownley, B. H., Weller, D. M., and Thomashow. L. S., 1992, Influence of in situ and in vitro pH on suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79. Phytopathology 82:178–184.Google Scholar
  129. Peypoux, F., Marion, D., Maget Dana, R., Ptak, M., Das, B. C., and Michel, G., 1985, Structure of bacillomycin, F., a new peptidolipid antibiotic of the iturin group. Eur. J. Biochem. 153: 335–340.CrossRefPubMedGoogle Scholar
  130. Picard, C., Di Cello, F., Ventura, M., Fani, R., and Gluckert. A., 2000, Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl. Environ. Microbiol. 66: 948–955.PubMedGoogle Scholar
  131. Pierson, L. S., Wood, D. W., Pierson, E. A., and Chancey, S. T., 1998, N-acyl homoserine lactone-mediated gene regulation in biological control by fluorescent pseudomonads: current knowledge and future work. Eur. J. Plant Pathol. 104: 1–9.Google Scholar
  132. Pierson, L. S., Gaffney, T., Lam, S., and Gong, F., 1995, Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium Pseudomonas aureofaciens 30-84. FEMS Microbiological Lett. 134: 299–307.Google Scholar
  133. Pierson, L.S., III, and Pierson, E.A., 1996, Phenazine antibiotic production on Pseudomonas aureofaciens: role in rhizosphere ecology and pathogen suppression. FEMS Microbiol. Lett. 136: 101–108.Google Scholar
  134. Raaijmakers, J., Bonsall, R. F., and Weller, D. M., 1999, Effect pf population density of Pseudomonas fluorescens on production of 2, 4-Diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89: 470–475.Google Scholar
  135. Raaijmakers, J. M., Weller, D. M., and Thomashow, L. S., 1997, Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl. Environ. Microbiol. 63: 881–887.Google Scholar
  136. Raffel, S. J., Stabb, E. V., Milner, J. L., and Handelsman, J., 1996, Genotypic and phenotypic analysis of zwittermicin A-producing strains of Bacillus cereus. Microbiology 142: 3425–3436.PubMedGoogle Scholar
  137. Ramarathnam, R., and Fernando, W. G. D., 2004, Polymerase chain reaction-based detection of antibiotics produced by bacterial biocontrol agents of the blackleg pathogen Leptosphaeria maculans of canola. Canadian J. Plant Pathol. 26: 421.Google Scholar
  138. Romeo, T., 1998, Global regulation by the small RNA binding protein CsrA and non-coding RNA molecule CsrB. Mol. Microbiol. 29:1321–1330.CrossRefPubMedGoogle Scholar
  139. Rosenberg, E., and E. Z. Ron., 1999, High-and low-molecular-mass microbial surfactants. Appl. Microbiol. Biotechnol. 52:154–162.CrossRefPubMedGoogle Scholar
  140. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W., and Kloepper, J. W., 2003a, Bacterial volatiles promote growth in Arabidopsis. Proc. Nation. Acad. Sci. 100: 4927–4932.Google Scholar
  141. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W., and Kloepper, J. W., 2003b, Volatiles produced by PGPR elicit plant growth promotion and induced resistance in Arabidopsis. Proceedings of the 6th International Workshop on Plant Growth Promoting Rhizobacteria. pp.436–443.Google Scholar
  142. Sacherer, P., Défago, G., and Haas, D., 1994, Extracellular protease and phosholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol. Lett. 116:155–160.PubMedGoogle Scholar
  143. Savchuk, S., and Fernando, W. G. D., 2004, Effect of timing of application and population dynamics on the degree of biological control of Sclerotinia sclerotiorum by bacterial antagonists. FEMS Microbiol. Ecol. 49: 379–388.Google Scholar
  144. Schnider-Keel, U., Seematter, A., Maurhofer, M., Blumer, C., Duffy, B., Gigot-Bonnefoy, C., Reimmann, C., Notz, R., Defago, G., Haas, D., and Keel, C., 2000, Autoinduction of 2,4-Diacetyl phloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHAO and repression by the bacteria lmetabolites salicylate and pyoluteorin. J. Bacteriol. 182:1215–1225.CrossRefPubMedGoogle Scholar
  145. Seow, K. T., Meurer, G., Gerlitz, M., Wendt-Pienkowski, E., Hutchinson, C. R., and Davies, J., 1997, A study of iterative type II polyketide synthases, using bacterial genes cloned from soil DNA: a means to access and use genes from uncultured microorganisms. J. Bacteriol. 179: 7360–7368.PubMedGoogle Scholar
  146. Shanahan, P., Borro, A., O’Gara, F., and Glennon, J. D., 1992a, Isolation, trace enrichment and liquid chromatographic analysis of diacetylphloroglucinol in culture and soil samples using UV and amperometric detection. J. Chromatogr. 606:171–177.CrossRefGoogle Scholar
  147. Shanahan, P., O’sullivan D. J., Simpson, P., Glennon, J.,D., and O’Gara, F., 1992b, Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl. Environ. Microbiol. 58: 353–358.PubMedGoogle Scholar
  148. Sharifi-Tehrani, A., Zala, M., Natsch, A., Moenne-Loccoz, Y., and Defago, G., 1998, Biocontrol of soil-borne fungal plant diseases by 2,4-diacetylphloroglucinol-producing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. Eur. J. Plant Pathol. 104: 631–643.CrossRefGoogle Scholar
  149. Shoji, J., Hinoo, H., Kato, T., Hattori, T., Hirooka, K., Tawara, K., Shiratori, O., and Yoshihiro, T., 1990, Isolation of cepafungins I, II and III from Pseudomonas species. J. Antibiot. 43:783–787.PubMedGoogle Scholar
  150. Shoji, J., Hinoo, H., Terui, Y., Kikuchi, J., Hattori, T., Ishii, K., Matsumoto, K., and Yoshida. T., 1989, Isolation of azomycin from Pseudomonas fluorescens. J. Antibiot. 42: 1513–1514.PubMedGoogle Scholar
  151. Silo-Suh, L. A., Lethbridge, B. J., Raffel, S. J., He, H., Clardy, J., and Handelsman, J., 1994, Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microbiol. 60: 2023–2030.PubMedGoogle Scholar
  152. Silo-suh, L. A., Stab, V. E., Raffel, S.R., and Handelsman, J., 1998, Target range of Zwittermicin A, an Aminopolyol antibiotic from Bacillus cereus. Curr. Microbiol. 37: 6–11.PubMedGoogle Scholar
  153. Slininger, P. J., and Jackson, M. A., 1992, Nutrtional factors regulating growth and accumulation of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. Appl. Microbiol. Biotech. 37: 388–392.CrossRefGoogle Scholar
  154. Smirnov, V. V., and. Kiprianova. E. A., 1990, Bacteria of Pseudomonas genus, Naukova Dumka, Kiev, Ukraine. [Translation by D. V. Mavrodi.] pp. 100–111.Google Scholar
  155. Smith, K. P., Havey M. J., and Handelsman, J., 1993, Suppression of cottony leak of cucumber with Bacillus cereus strain UW85. Plant Dis. 77:139–142.Google Scholar
  156. SooJeong, C, Sang Ryeol, P., Minkeun, K., Woojin. L., Sungkee, R., Changlong, A., Suyoung. H., Younghan, L., Seoncii, J., Yong un, C., and HanDae. Y., 2002, Endophytic Bacillus sp. isolated from the interior of balloon flower root. Biosci. Biotech. Biochem. 66:1270–1275.Google Scholar
  157. Sorensen, D., Nielsen, T. H., Christophersen, C., Sorensen, J., and Gajhede, M., 2001, Cyclic lipoundecapeptide amphisin from Pseudomonas sp. strain DSS73. Acta Crystallogr. C 57:1123–1124.Google Scholar
  158. Stohl, E.A., Brady, S. F., Clardy, J., and Handelsman, J., 1999, ZmaR, a novel and widespresd antibiotic resistance determinant that acetylates zwittermycin A. Appl. Environ. Microbiol. 181: 5455–5460.Google Scholar
  159. Stover, C. K., Pham, X. Q., Erwin, A. L., Mizogughi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S., Hufnagle, W. O., Kowalik, D. J., Lagro, U. M., Garber, R. L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L.L., Coulter, S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Womg, G.K., Wu, Z., and Paulsen, I.T., 2000, Complete genome sequence of Pseudoonas aeruginosa PA01, an opportunistic pathogen. Nature 406: 959–964.PubMedGoogle Scholar
  160. Sutherland, R., Boon, R.J., Griffin, K.E., Masters, P.J., Slocombe, B., and White, A.R., 1985, Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrob. Agents Chemother. 27:495–498.PubMedGoogle Scholar
  161. Takeda, R., 1958, Pseudomonas pigments. I. Pyoluteorin, a new chlorine-containing pigment produced by Pseudomonas aeruginosa. Hako Kogaku Zasshi 36: 281–290.Google Scholar
  162. Takesako, K., Kuroda, H., Inoue, T., Haruna, F., Yoshikawa, Y., Kato, I., Uchida, K., Hiratani, T., and Yamaguchi, H., 1993, Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. J. Antibiot. 46:1414–1420.PubMedGoogle Scholar
  163. Tambong, J.T., and Hofte, M., 2001, Phenazines are involved in biocontrol of Pythium myriotylum on cocoyam by Pseudomonas aeruginosa PNA1. Eur. J. Plant Pathol. 107: 511–521.CrossRefGoogle Scholar
  164. Tazawa, J., Watanabe, K., Yoshida, H., Sato, M., and Homma, Y., 2000, Simple method of detection of the strains of fluorescent Pseudomonas spp. producing antibiotics, pyrrolnitrin and phloroglucinol. Soil Microorg. 54: 61–67.Google Scholar
  165. Thomashow, L. S., and Weller, D. M., 1995, Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites, in: Plant-Microbe Interactions, Chapman and Hall, Stacey, G. and Keen, N.T., eds., New York, pp. 187–235.Google Scholar
  166. Thomashow L. S., and Weller, D. M., 1988, Role of phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J. Bacteriol. 170: 3499–3508.PubMedGoogle Scholar
  167. Thomashow, L. S., and Weller, D. M., 1996, Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites, in: Plant-Microbe Interactions, Stacey G & Keen NT, ed., Chapman & Hall, New York, pp. 187–236.Google Scholar
  168. Thomashow, L. S., Bonsall, R. F., and Weller, D. M., 1997, Antibiotic production by soil and rhizosphere microbes in situ, in: Manual of Environmental Microbiology. Hurst, C. J., Knudsen, G. R., McInerney M. J., Stetzenbach, L. D. & Walter, M. V., ed., ASM Press, Washington DC, pp. 493–499.Google Scholar
  169. Thomashow, L. S., Weller, D. M., Bonsall, R. F., Pierson, L.S.III., 1990, Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl. Environ. Microbiol. 56: 908–912.PubMedGoogle Scholar
  170. Thrane, C., Nielsen, T. H. Nielsen, M. N., Olsson, S., and Sorensen, J., 2000, Viscosinamide-producing Pseudomonas fluorescens DR54 exerts biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiol. Ecol. 33:139–146.PubMedGoogle Scholar
  171. Tsuge, K., Akiyama, T., and Shoda, M., 2001, Cloning, sequencing and characterization of the Iturin A operon. J. Bacteriol. 183: 6265–6273.PubMedGoogle Scholar
  172. Turner, J. M., and Messenger, A. J., 1986, Occurrence, biochemistry and physiology of phenazine pigment production. Adv. Microbial Physiol. 27: 211–275.Google Scholar
  173. van Pee, K. H., Salcher, O., and Lingens, F., 1980, Formation of pyrrolnitrin and 3-(2-amino-3-chlorophenyl)pyrrolefrom 7-chlorotryptophan. Angew Chem Int Ed Engl. 19: 828.Google Scholar
  174. Voisard, C., Bull, C. T., Keel, C., Laville, J., Maurhofer, M., Schnider, U., Défago, G., and Haas, D., 1994, Biocontrol of root diseases by Pseudomonas fluorescens CHA0: current concepts and experimental approaches, in: Molecular ecology of rhizosphere microorganisms. F. O’Gara, D. N. Dowling, and B. Boesten ed., VCH, Weinheim, Germany, pp. 69–89.Google Scholar
  175. Voisard, C., Keel, C., Haas, D., and Defago, G., 1989, Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J. 8: 351–358.Google Scholar
  176. Vollenbroich, D., Özel, M., Vater, J., Kamp, R. M., and Pauli, G., 1997, Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals 25: 289–297.CrossRefPubMedGoogle Scholar
  177. Volpon, H., Besson, F., and Lancelin, J. M., 2000, NMR structure of antibiotics plipastations A and B from Bacillus subtilis inhibitors of phospholipase A2. FEBS 485:76–80.CrossRefGoogle Scholar
  178. Volpon, L. Besson, F., and Lancelin, J. M., 1999, NMR structure of active and inactive forms of the sterol dependent antibiotic bacillomycin L. Eur. J. Bioche. 264: 200–210.Google Scholar
  179. Whatling, C. A., Hodgson, J. E., Burnham, M. K. R., Clarke, N. J., Franklin F. C. H., and Thomas, C. M., 1995, Identification of a 60 kb region of the chromosome of Pseudomonas fluorescens NCIB 10586 required for the biosynthesis of pdeudomonic acid (mupirocin). Microbiology 141: 973–982.Google Scholar
  180. Whitehead, N. A., Barnard, A. M. L., Slater, H., Simpson, N., and Salmond, G. P. C., 2001, Quorum sensing in Gram-negative bacteria. FEMS Microbiol. Rev., 25: 365–404.PubMedGoogle Scholar
  181. Whitman, W. B., Coleman, D. C., and Wiebe, W. J., 1998, Prokaryotes: The unseen majority. Proc.Natl. Acad.Sci. U.S.A. 95: 6578–6583.CrossRefPubMedGoogle Scholar
  182. Williams, S. T., and Vickers, J. C., 1986, The ecology of antibiotic production. Microbial Ecol. 12:43–52.CrossRefGoogle Scholar
  183. Wissing, F., 1974, Cyanide formation from oxidation of glycine by a Pseudomonas species. J. Bacteriol. 117:1289–1294.PubMedGoogle Scholar
  184. Wright, S. A. I, Zumoff, C. H, Schneider, L., and Beer, S. V., 2001, Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl. Environ. Microbiol. 67: 284–292.CrossRefPubMedGoogle Scholar
  185. Yoshida, S., Hiradate, S., Tsukamoto, T., hatakeda, K., and Shilata. A., 2001, Antimicrobial activity of culture filtrate of B. amyloquefaciens RC2 isolated from mulberry leaves. Phytopathology 91:181–187.Google Scholar
  186. Yoshida, S., Shirata, A., and Hiradate, S., 2002, Ecological characteristics and biological control of mulberry anthracnose. JARQ 36: 89–95.Google Scholar
  187. You, Z., Fukushima, J., Tanaka, K., Kawamoto, S., and Okuda, K., 1998, Induction into the stationary growth phase on the Pseudomonas aeruginosa by N-acylhomoserine lactone. FEMS Microbiol. Lett. 164: 99–106.PubMedGoogle Scholar
  188. Yu, G. Y., Sinclair, J. B., Hartman, G. L., and Beragnolli, B. L., 2002, Production of iturin A by B. amyloliquefaciens suppressing R. solani. Soil Biol. Biochem. 34: 955–963.CrossRefGoogle Scholar
  189. Zhang, Y., and Fernando, W. G. D., 2004a, Presence of biosynthetic genes for phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol and pyrrolnitrin in Pseudomonas chlororaphis strain PA-23. Can. J. Plant Pathol. (in press).Google Scholar
  190. Zhang, Y., and Fernando W. G. D., 2004b, Zwittermicin A detection in Bacillus spp. controlling Sclerotinia sclerotiorum on canola. Phytopathology 94:S116.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • W. G. Dilantha Fernando
    • 1
  • S. Nakkeeran
    • 1
  • Yilan Zhang
    • 1
  1. 1.Department of Plant ScienceUniversity of ManitobaWinnipegCanada

Personalised recommendations