Skip to main content

Enzymatic Systems Involved in Drug Biotransformation

  • Chapter
Drug Metabolism
  • 1965 Accesses

4.4 Final Remarks

In describing above the role and nature of enzymes in the most prominent classes, as well as some aspects of their action at the molecular level, the authors’ intention has in part been to prepare the way for an appreciation of two extremely important phenomena that govern enzyme activity and that have crucial implications for the pharmacological effects of drugs. These are the occurrence of adverse reactions and drug-drug interactions, both of which can be understood on the basis of enzyme induction and enzyme inhibition, the topics of the next chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Price NC, Stevens L. 2000. Fundamentals of Enzymology. The Cell and Molecular Biology of Catalytic Proteins, 3rd ed., Oxford Univ Press, pp 118–266; 370—399.

    Google Scholar 

  2. Cornish-Bowden AC. 1995. Fundamentals of enzyme kinetics. London: Portland Press, pp 46–111.

    Google Scholar 

  3. Metais P, Agneray J, Ferard G, Fruchard J-C, Jardillier J-C, Revol A, Siest G, Stahl A. 1990. Enzymes. In: Biochimie clinique. 1. Biochimie analitique 2e ed. Paris Cedex 06: Simep, pp 144–163.

    Google Scholar 

  4. Hennen G. 1995. Cinetique enzimatique. In: Biochimie, 1ercycle. Paris: Dunod, pp 166–176.

    Google Scholar 

  5. Zubay GF, Parson WW, Vance DE. 1994. Enzyme Kinetics and How Enzymes Work. In: Sievers EM, editor. Dubuque, Iowa: Wm C Brown Publishers, pp 135–153; 154–174.

    Google Scholar 

  6. Matthews CK, van Holde KE, Ahern KG. 1999. Enzymes: biological Catalysts. In: Roberts B, Weber L, Marsch J, editors. Biochemistry, 3rd ed. San Francisco: An Imprint of Addison Wesley Longman Inc., pp 360–408.

    Google Scholar 

  7. Hammes, Gordon G. 2002. Multiple conformational changes in enzyme catalysis. Biochemistry 41:8221–8228.

    Article  PubMed  CAS  Google Scholar 

  8. Zubay GF, Parson WW, Vance DE. 1994. How Enzymes Work. In: Sievers EM, editor. Dubuque, Iowa: Wm C Brown Publishers, pp 165–169.

    Google Scholar 

  9. Testa B. 1995. The Nature and Functioning of Cytochromes P450 and Flavin-containing monooxygenases. In: Testa B, Caldwell J, editors. The Metabolism of Drugs and Other Xenobiotics: Biochemistry of Redox Reactions. London: Academic Press (Harcourt Brace and Company, Publishers), pp 70–121.

    Google Scholar 

  10. Ortiz de Montellano PR. 1999. The Cytochrome P450 Oxidative System. In: Woolf TF, editor. Handbook of Drug Metabolism. New York: Marcel Dekker Inc., pp 109–130.

    Google Scholar 

  11. Gibson GG, Skett P. 1994. Cytochrome P450-dependent mixed function oxidation reactions. In: Introduction to Drug Metabolism, 2nd ed. London: Blackie Academic & Professional, An Imprint of Chapman & Hall, pp 37–49.

    Google Scholar 

  12. Coon MJ, Person AV. 1980. Microsomal cytochrome P450: a central catalyst in detoxication reactions. In: Jacobi WB, editor. Enzymatic Basis of detoxication. New York: Academic Press, pp 117–134.

    Google Scholar 

  13. Caughey WS, Ibers JA. 1977. Crystal and molecular structure of free base porphyrin, protoporphyrin IX dimethyl ester. J Am Chem Soc 99:6639–6645.

    Article  PubMed  CAS  Google Scholar 

  14. Black SD, Coon MJ. 1986. Studies on the identity of the heme-binding cysteinyl residue in rabbit liver microsomal cytochrome P-450 isozyme 2. Biochem Biophys Res Co 128:82–89.

    Article  Google Scholar 

  15. Castro CE. 1980. Mechanisms of reaction of hemeproteins with oxygen and hydrogen peroxide in the oxidation of organic substrates. Pharmacol Therapeut 10:171–189.

    Article  CAS  Google Scholar 

  16. Gerber NC, Sligar SG. 1992. Catalytic mechanism of cytochrome P-450: evidence for a distal charge relay. J Am Chem Soc 114:8743–8743.

    Article  Google Scholar 

  17. Ortiz de Montellano PR. 1986. Oxygen activation and transfer. In: Ortiz de Montellano PR, editor. Cytocrome P450: Structure, Mechanism, and Biochemistry, 2nd ed. New York: Plenum, pp 217–271.

    Google Scholar 

  18. Nelson D. Koymans L, Kamataki T, Stegeman G, Feyereisen R, Waxman D, Watterman M, Gotoh O, Coon M, Estabrook R, Gunsalus R, Nebert D. 1996. P450 superfamily: Update to new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6:1–9.

    PubMed  CAS  Google Scholar 

  19. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. 1994. Interindividual variations in human liver cytochrome P450 enzymes involved in the oxidation of drugs, carcinogens, and toxic chemicals: Studies with liver microsomes of 30 Japanese and 30 caucasians. J Pharmacol Exp Ther 270:414–421.

    PubMed  CAS  Google Scholar 

  20. Correia MA. 1995. In: Ortiz de Montellenano PR, editor. Cytocrome P450: Structure, Mechanism, and Biochemistry, 2nd ed. New York: Plenum, pp 607–630.

    Google Scholar 

  21. Guengerich FP. 1995. Human cytochrome P450 enzymes. In: Ortiz de Montellenano PR, editor. Cytocrome P450: Structure, Mechanism, and Biochemistry, 2nd ed. New York: Plenum, pp 473–575.

    Google Scholar 

  22. Orlando R, Piccolli P, De Martin S, Padrini R, Floreani M, Palatini P. 2004. Cytocrome P450 1A2 is a major determinant of lidocaine metabolism in vivo: effects of liver function. Clin Pharmacol Ther 75:80–88.

    Article  PubMed  CAS  Google Scholar 

  23. Peterson TC, Peterson MR, Wornell PA, Blanchard MG, Gonzales FJ. 2004. Role of CYP1A2 and CYP2E1 in the pentoxifylline ciprofloxacin drug interaction. Biochem Pharmacol 68:395–402.

    Article  PubMed  CAS  Google Scholar 

  24. Yu L-S, Yao T-W, Yeng Su. 2003. In vitro metabolism of zolmitriptan in rat cytocromes induced with β-naphthoflavone and the interaction between six drugs and zolmitriptan. Chem-Biol Interact 146:263–272.

    Article  PubMed  CAS  Google Scholar 

  25. Daly AK. Pharmacogenetics. 1999. In: Woolf TF, editor. Handbook of Drug Metabolism. New York: Marcel Dekker Inc., pp 175–202.

    Google Scholar 

  26. Lang T, Klein K, Fischer J, Nussler AK, Neuhaus P, Hofmann U, Eichelbaum M, Schwab M, Zanger UM. 2001. Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics 11:399–405.

    Article  PubMed  CAS  Google Scholar 

  27. Xie H-J, Yasar U, Lundgren S, Griskevicius L, Terelius Y, Hassan M, Rane A. 2003. Role of polymorphic CYP2B6 in cyclophosphamide bioactivation. Pharmacogenomics J 3:53–61.

    Article  PubMed  CAS  Google Scholar 

  28. Hesse LM, Venkatakrishnan K, Court MH, von Moltke LL, Duan SX, Shader RI, Greenblatt DJ. 2000. CYP2B6 mediates the in vitro hydroxylation of bupropion: a potential drug interactions with other antidepressants. Drug Metab Dispos 28:1176–1183.

    PubMed  CAS  Google Scholar 

  29. Ko JW, Desta Z, Flockart DA. 1998. Human N-demethylation of (S)-mephenytoin by cytochromes P450s 2C9 and 2B6. Drug Metab Dispos 26:775–778.

    PubMed  CAS  Google Scholar 

  30. Richter T, Schwab M, Eichelbaum M, Zanger UM. 2005. Inhibition of human CYP2B6 by N,N′,N″,-triethylenethiophosphoramide is irreversible and mechanism-based. Biochem Pharmacol 69:517–524.

    Article  PubMed  CAS  Google Scholar 

  31. Richter T, Murdter TE, Heinkele G, Pleiss J, Tatzel S, Schwab M, Eichelbaum M, Zanger UM. 2004. Potent mechanism-based inhibition of human CYP2B6 by clopidrogel and ticlopidine. J Pharmacol Exp Ther 308:189–197.

    Article  PubMed  CAS  Google Scholar 

  32. Martin H, Sarsat JP, de Waziers I, Housset C, Balladur P, Beaune P, Albaladejo V. 2003. Induction of cytochromes P4502B6 and 3A4 expression by Phenobarbital and cyclophosphamide in cultured human liver slices. Pharm Res 20:557–568.

    Article  PubMed  CAS  Google Scholar 

  33. Gonzales FJ. 2005. Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutat Res 569:101–110.

    Google Scholar 

  34. Scott EE, Halpert JR. 2005. Structures of cytochrome P450 3A4. Trends Biochem Sci 30:5–7.

    Article  PubMed  CAS  Google Scholar 

  35. Goeptar AR, Scheerens H, Vermeulen NPE. 1995. Oxygen and xenobiotic reductase activities of cytocrome P450. Crit Rev Toxicol 25:25–31.

    PubMed  CAS  Google Scholar 

  36. Ziegler DM. 1988. Flavin-containing monooxygenases: catalytic mechanism and substrate specificities. Drug Metab Rev 19:1–32.

    PubMed  CAS  Google Scholar 

  37. Rose J, Castagnoli N Jr. 1983. The metabolism of tertiary amines. Med Res Rev 3:73–88.

    PubMed  CAS  Google Scholar 

  38. Eling TE, Thompson DC, Foureman GL, Courtis JF, Hughes MF. 1990. Prostaglandin H synthase and xenobiotic oxidation. Ann Rev Pharmacol Toxicol 30:1–45.

    CAS  Google Scholar 

  39. DeWitt DL, El-Harith EA, Kraemer SA, Andrews MJ, Yao EF, Armstrong RL, Smith WL. 1990. The aspirin and heme-binding sites of ovine and murine prostaglandin endoperoxide synthases. J Biol Chem 265:5192–5198.

    PubMed  CAS  Google Scholar 

  40. Cashman JR, Olsen LD, Bornhaim LM. 1990. Enantioselective S-oxygenation by flavin-containing and cytochrome P-450 monooxygenases. Chem Res Toxicol 3:344–349.

    Article  PubMed  CAS  Google Scholar 

  41. Ben-Zvi Z, Weissman-Teitellman B, Katz S, Danon A. 1990. Acetaminophen hepatotoxicity: is there a role for prostaglandin synthesis? Arch Toxicol 64:299–304.

    Article  PubMed  CAS  Google Scholar 

  42. Vermeulen NPE, Bessems JGM, Van der Straat R. 1992. Molecular aspects of paracetamol-induces hepatotoxicity and its mechanism-based prevention. Drug Metab Rev 24:367–407.

    PubMed  CAS  Google Scholar 

  43. Patten CJ, Thomas PE, Guy RL, Lee M, Gonzales FJ, Guengerich FP, Yang CS. 1993. Cytochrome P450 enzymes involved in acetaminophen activation by rat and human liver microsomes and their kinetics. Chem Res Toxicol 6:511–518.

    Article  PubMed  CAS  Google Scholar 

  44. Eling TE, Curtis JF. 1992. Xenobiotic metabolism by prostaglandin synthase. Pharmacol Therap 53:261–273.

    Article  CAS  Google Scholar 

  45. Marnet LJ. 1983. Cooxidation during prostaglandin biosynthesis: A pathway for the metabolic activation of xenobiotics. In: Hodgson E, Bend JR, Philpot RM, editors. Reviews in Biochemical Toxicology (vol.5). New York: Elsevier Biomedical, pp 135–172.

    Google Scholar 

  46. Singer TP. 1991. Monoamine oxidases. In: Mueller F, editor. Chemistry and Biochemistry of Flavoenzymes (vol.2). CRC, Boca Raton, FL, pp 437–470.

    Google Scholar 

  47. Wu HF, Chen K, Shih JC. 1993. Site-directed mutagenesis of monoamine oxidase A and B: role of cysteines. Mol Pharmacol 43:888–893.

    PubMed  CAS  Google Scholar 

  48. Tripton KF, O’Carroll AM, Mc Crodden JM. 1987. The catalytic behaviour of monoaminoxidase. J Neural Transm 23:25–35.

    Google Scholar 

  49. Kyburtz E. 1990. New developments in the field of MAO inhibitors. Drug News Perspect 3:592–599.

    Google Scholar 

  50. Youdim MBH, Finberg JPM. 1991. New directions in monoamine oxidase A and B selective inhibitors and substrates. Biochem Pharmacol 41:155–162.

    Article  PubMed  CAS  Google Scholar 

  51. Maret G, Testa B, Jenner P, El Tayar N, Carrupt PA. 1990. The MPTP story: MAO activates tetrahydropyridine derivatives to toxins causing parkinsonism. Drug Metab Rev 22:291–332.

    PubMed  CAS  Google Scholar 

  52. Chacon JN, Chedekel MR, Land EJ, Truscott TG. 1987. Chemically induced Parkinson’s disease: intermediates in the oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to the 1-methyl-4-phenyl-pyridinium ion. Biochem Biophys Res Co 144:957–964.

    Article  CAS  Google Scholar 

  53. Beedham C. 1985. Molybdenum hydroxylases as drug-metabolizing enzymes. Drug Metab Rev 16:119–156.

    PubMed  CAS  Google Scholar 

  54. Oertling AM, Hille R. 1990. Resonance-enhanced Raman scattering from the molybdenum center of xanthine oxidase. J Biol Chem 265:17446–17450.

    PubMed  CAS  Google Scholar 

  55. Krenitsky TA, Neil SM, Elion GB, Hitchings GC. 1972. A comparison of specificities of xanthine oxidase and aldehyde oxidase. Arch Biochem Biophys 150:585–599.

    Article  PubMed  CAS  Google Scholar 

  56. Pristos CA, Gustafson DL. 1994. Xanthine dehydrogenase and its role in cancer chemotherapy. Oncol Res 6:477–82.

    Google Scholar 

  57. Qing WG, Powell KL, Stoica G, Szumlansky CL, Weinshilboum RM, Macleod MC. 1995. Toxicity and metabolism of 2,6-dithiopurine, a potential chemoprotective agent. Drug Metab Dispos 23:854–860.

    PubMed  CAS  Google Scholar 

  58. Nishino T. 1997. The conversion of xanthine dehydrogenase to xanthine oxidase and the role of the enzyme in reperfusion injury, Biochem Soc Trans 25: 783–786.

    PubMed  CAS  Google Scholar 

  59. Krenitsky TA. 1978. Aldehyde oxidase and xanthine oxidase — functional and evolutionary relationships. Biochem Pharmacol 27: 2763–2764.

    Article  PubMed  CAS  Google Scholar 

  60. Ruenitz PC, Bai X. 1995. Acidic metabolites of tamoxifen: Aspects of formation and fate in the female rat. Drug Metab Dispos 23:993–998.

    PubMed  CAS  Google Scholar 

  61. Guo W, Tung-Lerner M, Chen H, Chang C. Zhu J, Pizzorno G., Lin T, Cheng Y. 1995. 5-Fluoro-2-pyrimidone, a liver aldehyde oxidase-activated prodrug of 5-fluorouracil. Biochem Pharmacol 49:1111–1117.

    Article  PubMed  CAS  Google Scholar 

  62. Lee S, Renwick AG. 1995. Sulphoxide reduction by rat and rabbit tissues in vitro. Biochem Pharmacol 49:1557–1565.

    Article  PubMed  CAS  Google Scholar 

  63. Gibson GG, Skett P. 1994. Epoxide hydrolase. In: Introduction to Drug Metabolism, 2nd ed. London: Blackie Academic & Professional, An Imprint of Chapman & Hall, pp 57–59.

    Google Scholar 

  64. Guenthner TM. 1990. Epoxide hydrolases. In: Mulder GJ, editor. Conjugation Reactions in Drug Metabolism: An integrated approach. London: Taylor & Francis, pp 365–367.

    Google Scholar 

  65. Oesch F, Timms CW, Walker CH, Guenthner TM, Sparrow A, Watabe T, Wolf CR. 1984. Existence of multiple forms of microsomal epoxide hydrolases with radically different substrate specificities. Carcinogenesis 5:7–9.

    PubMed  CAS  Google Scholar 

  66. Lockridge O. 1990. Genetic variants of human serum cholinesterase influence metabolism of the muscle relaxant succinylcholine. Pharmacol Ther 47: 35–39.

    Article  PubMed  CAS  Google Scholar 

  67. Lohr JW, Willsky GR, Acara MA. 1989. Renal Drug Metabolism. Pharm Rev 50:107–141.

    Google Scholar 

  68. Gibson GG, Skett P. 1994. Epoxide hydrolase. In: Introduction to Drug Metabolism, 2nd ed. London: Blackie Academic & Professional, An Imprint of Chapman & Hall, pp 61–63.

    Google Scholar 

  69. Flock EV, Bollman JL, Owens CA, Zollman PE. 1965. Conjugation of thyroid hormones and analogues by the Gunn rat. Endocrinology 77:303–308.

    Article  PubMed  CAS  Google Scholar 

  70. Burchell B, Coughtrie MWH. 1989. UDP-glucuronyltransferases: genetic factors influencing the metabolism of foreign compounds. Pharmacol Ther 43:261–289.

    Article  PubMed  CAS  Google Scholar 

  71. de Morais SM, Uetrecht JP, Wells PG. 1992. Decreased glucuronidation and increased activation of acetaminophen in Gilbert’s syndrome. Gastroenterology 102:577–581.

    PubMed  Google Scholar 

  72. Weinshilboum R. 1990. Sulphotransferase pharmacogenetics. Pharmacol Ther 45:93–102.

    Article  PubMed  CAS  Google Scholar 

  73. Mannervick B, Danielson UH. 1988. Glutathione transferases — structure and catalytic activity. Crit Rev Biochem 23:281–288.

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

(2005). Enzymatic Systems Involved in Drug Biotransformation. In: Ionescu, C., Caira, M.R. (eds) Drug Metabolism. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4142-X_4

Download citation

Publish with us

Policies and ethics