Logical Problems Suggested by Logicism

  • J. W. Degen
Part of the Vienna Circle Institute Yearbook [2004] book series (VCIY, volume 12)


Logical Problem Incompleteness Theorem Predicative Function Logical Proof Semantic Version 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.W. Degen: Systeme der kumulativen Logik, Philosophia Verlag, Munich (1983)Google Scholar
  2. [2]
    J. W. Degen: Two formal vindications of logicism, in: Philosophy of Mathematics, Proceed. 15th Intern. Wittgenstein Symp. ed. J. Czermak, Wien (1993), 243–250Google Scholar
  3. [3]
    J.W. Degen: Complete infinitary type logics, Studia Logica 63 (1999), 85–119CrossRefGoogle Scholar
  4. [4]
    J.W. Degen and J. Johannsen: Cumulative higher-order logic as a foundation for set theory, Math. Log. Quart. 46,2 (2000), 147–170CrossRefGoogle Scholar
  5. [5]
    G. Frege: Die Grundlagen der Arithmetik, Breslau (1884)Google Scholar
  6. [6]
    G. Frege: Grundgesetze der Arithmetik, Jena (1893, 1903)Google Scholar
  7. [7]
    K. Gödel: Russell’s Mathematical Logic, in: Philosophy of Mathematics, eds. P. Benacerraf and H. Putnam, Englewood Cliffs (1964)Google Scholar
  8. [8]
    Jean van Heijenoort: From Frege to Gödel. A Source Book in Mathematical Logic, 1879–1931, Harvard University Press (1967)Google Scholar
  9. [9]
    G. Nakhnikian (ed.): Bertrand Russell’s Philosophy, Duckworth (1974)Google Scholar
  10. [10]
    F. P. Ramsey: Foundations, ed. Mellor, Routledge & Kegan Paul (1978)Google Scholar
  11. [11]
    B. Russell: The Principles of Mathematics. 2nd edition, Norton & Company (1938)Google Scholar
  12. [12]
    B. Russell: Mathematical logic as based on the theory of types, American Journal of Mathematica 30 (1908), 222–262, also in: [8]Google Scholar
  13. [13]
    K. Schütte: Proof Theory, Springer (1977)Google Scholar
  14. [14]
    A. N. Whitehead and B. Russell: Principia Mathematica. 2nd edition, Cambridge (1927)Google Scholar
  15. [15]
    L. Wittgenstein: Tractatus logico-philosophicus, Hrsg. von B. McGuinness u. J. Schulte, Suhrkamp (1989)Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • J. W. Degen
    • 1
  1. 1.Institute for Computer ScienceUniversity of Erlangen-NuernbergErlangenGermany

Personalised recommendations