Advertisement

Ramsey and the Vienna Circle on Logicism

  • Eckehart Köhler
Chapter
  • 530 Downloads
Part of the Vienna Circle Institute Yearbook [2004] book series (VCIY, volume 12)

Keywords

Inference Rule Type Theory Peano Arithmetic Proof Rule Incompleteness Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jon Barwise (ed.) (1977): Handbook of Mathematical Logic, North-Holland Publ. Co., Amsterdam.Google Scholar
  2. Yehoshua Bar-Hillel, E.I.J. Poznanski, Michael O. Rabin and Abraham Robinson (eds.) (1966): Essays on the Foundations of Mathematics, dedicated to A.A. Fraenkel on his seventieth birthday, Manes Press, Jerusalem.Google Scholar
  3. Paul Benacerraf (1963): “Tasks, Super-Tasks, and the Modern Eleatics”, The Journal of Philosophy LIX, 765–784.Google Scholar
  4. Paul Benacerraf (1965): “What Numbers Could Not Be”, Philosophical Review 74; reprinted in Benacerraf & Putnam (1983).Google Scholar
  5. Paul Benacerraf and Hilary Putnam (eds.) (1983): Philosophy of Mathematics: Selected Readings, 2nd edition, Cambridge University Press, Cambridge.Google Scholar
  6. Gerhard Benetka (2000): “Der ‘Fall’ Stegmüller”, in Veröffentlichungen des Instituts Wiener Kreis 8, Springer-Verlag, Vienna Stadler (2000).Google Scholar
  7. Paul Bernays (1958): Axiomatic Set Theory, with a Historical Introduction by Abraham A. Fraenkel, North-Holland Publishing Co., Amsterdam.Google Scholar
  8. Max Black (1933): The Nature of Mathematics, Harcourt, Brace & Co., New York.Google Scholar
  9. Herbert Bohnert (1963): “Carnap’s Theory of Definition and Analyticity”, in Schilpp (1963).Google Scholar
  10. Herbert Bohnert (1975): “Carnap’s Logicism”, in Hintikka (1975).Google Scholar
  11. George Boolos (1971): “The Iterative Conception of Set”, Journal of Philosophy LXVIII, 215–231; reprinted in Benacerraf & Putnam (1983) and in Boolos (1998).CrossRefGoogle Scholar
  12. George Boolos (1998): Logic, Logic, and Logic, edited by Richard Jeffrey, with Introductions and Afterword by John P. Burgess, Harvard University Press, Cambridge MA.Google Scholar
  13. Bernd Buldt, Eckehart Köhler, Michael Stöltzner, Peter Weibel, Carsten Klein, Werner DePauli-Schimanovich-Göttig (eds.) (2002): Kurt Gödel: Wahrheit und Beweisbarkeit 2. Kompendium zum Werk, öbv&hpt, Vienna.Google Scholar
  14. Georg Cantor (1883): Grundlagen einer allgemeinen Mannigfaltigkeitslehre, Teubner, Leipzig.Google Scholar
  15. Georg Cantor (1895, 1897): “Beiträge zur Begründung der transfiniten Mengenlehre”, Mathematische Annalen 46, 481–512; 49, 207–246; translated by P.E.B. Jourdin as Contributions to the Founding of the Theory of Transfinite Numbers, Open Court Publ. Co., Chicago 1915; reprinted Dover Publ. Co., New York 1952.CrossRefGoogle Scholar
  16. Rudolf Carnap (1922): “Der Raum. Ein Beitrag zur Wissenschaftslehre” (Dissertation), Kantstudien, Ergänzungsheft Nr. 56, Reuther & Reichard, Berlin.Google Scholar
  17. Rudolf Carnap (1926): Physikalische Begriffsbildung, Verlag G. Braun, Karlsruhe; reprinted by the Wissenschaftliche Buchgesellschaft, Darmstadt 1966.Google Scholar
  18. Rudolf Carnap (1928): Scheinprobleme der Philosophie: Das Fremdpsychische und der Realismusstreit, Weltkreis-Verlag, Berlin; reprinted together with Der logischer Aufbau der Welt by Felix Meiner Verlag, Hamburg 1961.Google Scholar
  19. Rudolf Carnap (1929): Abriss der Logistik, mit besonderer Berücksichtigung der Relationstheorie und ihrer Anwendungen, Schriften zur wissenschaftlichen Weltauffassung 2 (ed. by Philip Frank & Moritz Schlick), Springer-Verlag, Vienna; this later evolved into Carnap (1954).Google Scholar
  20. Rudolf Carnap (1934): Logische Syntax der Sprache, Schriften zur wissenschaftlichen Weltauffassung 8 (ed. by Philip Frank & Moritz Schlick), Springer-Verlag, Vienna; transl. as Carnap (1937).Google Scholar
  21. Rudolf Carnap (1935): “Ein Gültigkeitskriterium für die Sätze der klassischen Mathematik”, Monatshefte für Mathematik und Physik, 42, 163–190; translated as §§34a–34i of Carnap (1937).CrossRefGoogle Scholar
  22. Rudolf Carnap (1937): The Logical Syntax of Language, translation of Carnap (1934) by Amethe Smeaton (Countess von Zeppelin) with supplements, Routledge & Kegan Paul, London.Google Scholar
  23. Rudolf Carnap (1947): Meaning and Necessity, a Study in Semantics and Modal Logic, University of Chicago Press, Chicago.Google Scholar
  24. Rudolf Carnap (1950): Logical Foundations of Probability, University of Chicago Press, Chicago.Google Scholar
  25. Rudolf Carnap (1952): “Meaning Postultates”, Philosophical Studies 3, 65–73.CrossRefGoogle Scholar
  26. Rudolf Carnap (1954): Einführung in die symbolische Logik mit besonderer Berücksichtigung ihrer Anwendungen, Springer-Verlag, Vienna; translated by Wm. H. Meyer & John Wilkinson as Introduction to Symbolic Logic and Its Applications, Dover Publications, New York 1958.Google Scholar
  27. Rudolf Carnap (1956): “The Methodological Character of Theoretical Concepts”, in Herbert Feigl and Michael Scriven (eds.): Minnesota Studies in the Philosophy of Science I, The Foundations of Science and the Concepts of Psychology and Psychoanalysis, University of Minnesota Press, Minneapolis 1956.Google Scholar
  28. Rudolf Carnap (1958): “Beobachtungssprache und theoretische Sprache”, Dialectica 12, 236–248; this double issue was a Festschrift for Paul Bernays and was published separately as Logica Studia Paul Bernays dedicata, by Editions Grifon, Neuchâtel.Google Scholar
  29. Rudolf Carnap (1962): “The Aim of Inductive Logic”, in Ernest Nagel, Patrick Suppes & Alfred Tarski: Logic, Methodology and Philosophy of Science, Stanford University Press, Stanford.Google Scholar
  30. Rudolf Carnap (1963): “Intellectual Autobiography”, in Schilpp (1963).Google Scholar
  31. Rudolf Carnap (1966): “On the Use of Hilbert’s ε-Operator in Scientific Theories”, in Bar-Hillel et al. (1966).Google Scholar
  32. Rudolf Carnap (1968): “Inductive Logic and Inductive Intuition” (paper given in London 1965), in Lakatos (1968).Google Scholar
  33. Alonzo Church (1940): “A Formulation of the Simple Theory of Types”, Journal of Symbolic Logic 5, 56–68.CrossRefGoogle Scholar
  34. Alonzo Church (1951): “A Formulation of the Logic of Sense and Denotation”, in Henle, Kallen & Langer (1951).Google Scholar
  35. Alonzo Church (1956): Introduction to Mathematical Logic I, Princeton University Press, Princeton.Google Scholar
  36. Peter J. Clark (2004): “Frege, Neo-Logicism and Applied Mathematics”, in Galavotti & Stadler (2004).Google Scholar
  37. J. Alberto Coffa (1991): The Semantic Tradition from Kant to Carnap, Cambridge University Press, Cambridge.Google Scholar
  38. Louis Couturat (1901): La Logique de Leibniz d’après des documents inédits, Alcan, Paris; reprinted Olms, Hildesheim 1961.Google Scholar
  39. Louis Couturat (1902): “Sur la métaphysique de Leibniz”, Revue de métaphysique et de morale 10, 1–25; reprinted in Frankfurt (1972).Google Scholar
  40. Louis Couturat (1905): Les principes des mathématiques, avec un appendice sur la philosophie des mathématiques de Kant, Alcan, Paris; reprinted Olms, Hildesheim 1965.Google Scholar
  41. Johannes Czermak (ed.) (1993): Philosophy of Mathematics, Proceedings of the 15th International Wittgenstein Symposium, Hölder-Pichler-Tempsky, Vienna.Google Scholar
  42. Martin Davis (ed.) (1965): The Undecidable. Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions, Raven Press, Hewlett NY.Google Scholar
  43. Richard Dedekind (1888): Was sind und was sollen die Zahlen?, Vieweg, Brunswick; 2nd edition 1893; 3rd edition 1911; reprinted 1965; 2nd edition translated by Woodrow Woodruff Beman in Essays on the Theory of Numbers, Open Court Publishing Co., Chicago 1901; reprinted by Dover Publ. Co., New York 1963.Google Scholar
  44. Wolfgang Degen (1993): “Two Formal Vindications of Logicism”, in Czermak (1993).Google Scholar
  45. Wolfgang Degen (1999): “Complete Infinitary Type Logics”, Studia Logica 63, 85–119.CrossRefGoogle Scholar
  46. Wolfgang Degen and Jan Johannsen (2000): “Cumulative Higher-Order Logic as a Foundation for Set Theory”, Mathematical Logic Quarterly 46, 147–170.CrossRefGoogle Scholar
  47. Wilhelm Flitner (1986): Gesammelte Schriften 11, Paderborn.Google Scholar
  48. Abraham Adolf Fraenkel, Yehoshua Bar-Hillel and Azriel Levi (1973): Foundations of Set Theory, 2nd revised edition with the collaboration of Dirk van Dalen, Elsevier, Amsterdam.Google Scholar
  49. Philipp Frank (1932): Das Kausalgesetz und seine Grenzen, Schriftenreihe zur wissenschaftlichen Weltauffassung 6 ed. by Ph. Frank & M. Schlick, Springer-Verlag, Vienna; reprinted by Suhrkamp stw734, Frankfurt am Main 1988.Google Scholar
  50. Harry Frankfurt (ed.) (1972): Leibniz. A Collection of Critical Essays, Anchor Books AP16, Doubleday, New York.Google Scholar
  51. Gottlob Frege (1879): Begriffschrift. Eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Louis Nebert, Halle; reprinted Georg Olms, Hildesheim 1964.Google Scholar
  52. Gottlob Frege (1884): Die Grundlagen der Arithmetik. Eine logisch-mathematische Untersuchung über den Begriff der Zahl, Breslau; reprinted by Georg Olms, Hildesheim 1961; translated by J.L. Austin, Oxford 1960.Google Scholar
  53. Gottlob Frege (1893, 1903): Grundgesetze der Arithmetik, begriffschriftlich abgeleitet I, II, Jena; reprinted Georg Olms, Hildesheim 1962; translated by Montgomery Furth as The Basic Laws of Arithmetic, University of California Press, Berkeley 1967.Google Scholar
  54. Gottfried Gabriel (1996): “Gottlob Frege. Vorlesungen über Begriffschrift. Nach der Mitschrift von Rudolf Carnap”, History and Philosophy of Logic 17.Google Scholar
  55. Maria Carla Galavotti and Friedrich Stadler (eds.) (2004): Induction and Deduction in the Sciences, Vienna Circle Institute Yearbook 11, Kluwer, Dordrecht.Google Scholar
  56. Kurt Gödel (1931): “Über formal unentscheidbare Sätze der Principia mathematica und verwandter Systeme I”, Monatshefte für Mathematik und Physik 38, 35–72; translated in van Heijenoort (1967); reprinted with commentary by S.C. Kleene in Gödel (1986).CrossRefGoogle Scholar
  57. Kurt Gödel (1940): The Consistency of the Axiom of Choice and of the Generalized Coninuum-Hypothesis with the Axioms of Set Theory, Annals of Mathematics Studies 3, Princeton University Press, Princeton; 7th reprinting 1966; reprinted with commentary by R.S. Solovay in Gödel (1990).Google Scholar
  58. Kurt Gödel (1944): “Russell’s Mathematical Logic”, in Schilpp (1944); reprinted with commentary by Charles Parsons in Gödel (1990).Google Scholar
  59. Kurt Gödel (1951): “Some Basic Theorems on the Foundations of Mathematics and Their Implications”, in John W. Dawson, Jr., Warren Goldfarb, Charles Parsons and Robert Solovay Oxford University Press, New York Gödel (1995); this is the so-called “Gibbs-Lecture” held at the AMS meeting at Brown University.Google Scholar
  60. Kurt Gödel (1953): “Is Mathematics Syntax of Language?”, in John W. Dawson, Jr., Warren Goldfarb, Charles Parsons and Robert Solovay Oxford University Press, New York Gödel (1995); this was originally intended for the Schilpp volume (1963) on Carnap, but withdrawn.Google Scholar
  61. Kurt Gödel (1986, 1990): Collected Works I, Publications 1929–1936; II Publications 1938–1974, edited by Solomon Feferman (editor-in-chief), John W. Dawson, Jr., Stephen C. Kleene, Gregory H. Moore, Robert Solovay and Jean van Heijenoort, Oxford University Press, New York.Google Scholar
  62. Kurt Gödel (1995): Collected Works III, Unpublished Essays and Lectures, edited by Solomon Feferman (editor-in-chief), John W. Dawson, Jr., Warren Goldfarb, Charles Parsons and Robert Solovay Oxford University Press, New York.Google Scholar
  63. Ivor Grattan-Guinness (2000): The Search for Mathematical Roots, 1870–1940: Logics, Set Theories and the Foundations of Mathematics from Cantor through Russell to Gödel, Princeton University Press, Princeton.Google Scholar
  64. Michael Hallet (1984): Cantorean Set Theory and Limitation of Size, Oxford Univ. Press, Oxford.Google Scholar
  65. Jean van Heijenoort (ed.) (1967): From Frege to Gödel. A Source Book in Mathematical Logic, 1879–1931, Harvard University Press, Cambridge MA.Google Scholar
  66. Paul Henle, Horace Kallen and Susanne K. Langer (eds.) (1951): Structure, Method and Meaning: Essays in Honor of Henry M. Sheffer, with a forward by Felix Frankfurter, Liberal Arts Press, New York.Google Scholar
  67. David Hilbert (1926): “Über das Unendliche”, Mathematische Annalen 95, 161–190; partially translated in Benacerraf & Putnam (1983).CrossRefGoogle Scholar
  68. David Hilbert and Wilhelm Ackermann (1928): Grundzüge der theoretischen Logik, Springer-Verlag, Berlin; 4th edition 1959; translated as Principles of Mathematical Logic, Chelsea Publishing Co., New York 1950.Google Scholar
  69. Jaakko Hintikka (ed.): Rudolf Carnap, Logical Empiricist, Reidel Publ. Co., Dordrecht 1975.Google Scholar
  70. Peter Hylton (1990): Russell, Idealism and the Emergence of Analytic Philosophy, Oxford University Press, Oxford.Google Scholar
  71. Felix Kaufmann (1930): Das Unendliche in der Mathematik und seine Ausschaltung, Franz Deuticke, Vienna; reprinted by the Wissenschaftliche Buchgesellschaft, Darmstadt 1968; translated by Paul Foulkes as The Infinite in Mathematics, edited by Brian McGuinness with an Introduction by Ernest Nagel, Vienna Circle Collection 9, Reidel, Dordrecht 1978.Google Scholar
  72. Hubert C. Kennedy (1980): Peano. Life and Works of Giuseppe Peano, Reidel, Dordrecht.Google Scholar
  73. William and Martha Kneale (1962): The Development of Logic, Oxford Univ. Press, Oxford.Google Scholar
  74. Eckehart Köhler (2000): “Logic Is Objective and Subjective”, in Timothy Childers & Jari Palomäki (eds.): Between Words and Worlds. A Festschrift for Pavel Materna, Filosofia, Prague.Google Scholar
  75. Eckehart Köhler (2001): “Why von Neumann Rejected Carnap’s Dualism of Information Concepts”, in Rédei & Stöltzner (2001).Google Scholar
  76. Eckehart Köhler (2002): “Gödel und der Wiener Kreis”, in Köhler, Weibel et al. (2002).Google Scholar
  77. Eckehart Köhler (2002a): “Gödels Jahre in Princeton”, in Köhler, Weibel et al. (2002).Google Scholar
  78. Eckehart Köhler (2002b): “Gödels Platonismus”, in Buldt, Köhler et al. (2002).Google Scholar
  79. Eckehart Köhler (2006): “Intuition Regained. Gödel’s Views on Intuition, and How Carnap Abandoned Empiricism by Accepting Intuition as Evidence”, forthcoming, Synthese.Google Scholar
  80. Eckehart Köhler, Peter Weibel, Michael Stöltzner, Bernd Buldt, Carsten Klein und Werner DePauli-Schimanovich-Göttig (eds.) (2002): Kurt Gödel: Wahrheit und Beweisbarkeit 1. Dokumente und historische Analysen, öbv&hpt, Vienna.Google Scholar
  81. Stephan Körner (1979): “On Russell’s Critique of Leibniz’s Philosophy”, in Roberts (1979).Google Scholar
  82. Imre Lakatos (ed.) (1968): The Problem of Inductive Logic. Proceedings of the International Colloquium in the Philosophy of Science, London, 1965, Vol. 2, North-Holland Publ. Co., Amsterdam.Google Scholar
  83. Leonard Linsky (1997): “Was the Axiom of Reducibility a Principle of Logic?”, in Tait (1997).Google Scholar
  84. Benson Mates (1986): The Philosophy of Leibniz, Oxford Univerity Press, Oxford.Google Scholar
  85. Gregory H. Moore (1982): Zermelo’s Axiom of Choice, Its Origins, Development, and Influence, Springer-Verlag, Heidelberg.Google Scholar
  86. Bryan Norton: Linguistic Frameworks and Ontology. A Re-Examination of Carnap’s Meta-Philosophy, Janua Linguarum, Mouton Publishers, The Hague 1977.Google Scholar
  87. Alex Orenstein (1977): Willard Van Orman Quine, Twayne’s World Leaders Series 65, H.K. Hall, Boston.Google Scholar
  88. Jeff Paris and Leo Harrington (1977): “A Mathematical Incompleteness in Peano Arithmetic”, in Barwise (1977).Google Scholar
  89. Charles Parsons (1977): “What Is the Iterative Conception of Set?”, in Logic, Foundations of Mathematics, and Computability Theory, Proceedings of the 5 th International Congress of Logic, Methodology and the Philosophy of Science (London ON 1975), edited by Robert Butts & Jaakko Hintikka, Reidel, Dordrecht 1977; reprinted in Benacerraf & Putnam (1983).Google Scholar
  90. Giuseppe Peano (1889): Arithmetices principia, nova methodo exposita, Bocca, Turin; reprinted in Opere scelte 2, Edizione cremonese, Rome; transl. with a biographical sketch by Hubert C. Kennedy: Selected Works of Giuseppe Peano, University of Toronto Press, Toronto 1973.Google Scholar
  91. Willard Van Orman Quine (1937): “New Foundations for Mathematical Logic”, American Mathematics Monthly 44, 70–80; reprinted in Quine (1953).CrossRefGoogle Scholar
  92. Willard Van Orman Quine (1940): Mathematical Logic, Harvard University Press, Cambridge MA; rev. 1951.Google Scholar
  93. Willard Van Orman Quine (1951): “Two Dogmas of Empiricism”, in Quine (1953).Google Scholar
  94. Willard Van Orman Quine (1953): From a Logical Point of View: Logico-Philosophical Essays, Harvard University Press, Cambridge MA.Google Scholar
  95. Willard Van Orman Quine (1963): Set Theory and Its Logic, Harvard University Press, Cambridge MA.Google Scholar
  96. Willard Van Orman Quine (1963a): “Carnap and Logical Truth”, in Schilpp (1963); reprinted in Quine (1966).Google Scholar
  97. Willard Van Orman Quine (1966): The Ways of Paradox and Other Essays, Random House, New York.Google Scholar
  98. Willard Van Orman Quine (1970): Philosophy of Logic, Prentice-Hall, Englewood Cliffs NJ.Google Scholar
  99. Frank Plumpton Ramsey (1925): “Foundations of Mathematics”, Proceedings of the London Mathematical Society 25, 338–384; reprinted in Ramsey (1931, 1978).Google Scholar
  100. Frank Plumpton Ramsey (1926): “Truth and Probability”; reprinted in Ramsey (1931, 1978).Google Scholar
  101. Frank Plumpton Ramsey (1928): “On a Problem of Formal Logic”, Proceedings of the London Mathematical Society 30, 338–384.Google Scholar
  102. Frank Plumpton Ramsey (1929): “Theories”, in Ramsey (1931, 1978).Google Scholar
  103. Frank Plumpton Ramsey (1929a): “Philosophy”, in Ramsey (1931).Google Scholar
  104. Frank Plumpton Ramsey (1931): The Foundations of Mathematics and Other Logical Essays, ed. by R.B. Braithwaite with an Introduction by G.E. Moore, Routledge & Kegan Paul, London.Google Scholar
  105. Frank Plumpton Ramsey (1978): Foundations. Essays in Philosophy, Logic, Mathematics and Economics, re-edited version of Ramsey (1931) with a different selection of texts, including especially the two papers on taxation and savings, by D.H. Mellor with introductions by D.H. Mellor, L. Mirsky, T.J. Smiley and Richard Stone, Routledge & Kegan Paul, London 1978.Google Scholar
  106. Miklós Rédei and Michael Stöltzner (eds.) (2001): John von Neumann and the Foundations of Quantum Mechanics, Vienna Circle Institute Yearbook 8, Kluwer, Dordrecht.Google Scholar
  107. Nicholas Rescher (1967): The Philosophy of Leibniz, Prentice-Hall, New York.Google Scholar
  108. George W. Roberts (ed.) (1979): Bertrand Russell Memorial Volume, Allen & Unwin, London.Google Scholar
  109. George Romanos (1983): Quine and Analytic Philosophy, MIT Press, Cambridge MA.Google Scholar
  110. Bertrand Russell (1900): A Critical Exposition of the Philosophy of Leibniz, Cambridge University Press, Cambridge; 2nd ed. Allen & Unwin, London 1937.Google Scholar
  111. Bertrand Russell (1901): “Sur la logique des relations avec des applications à la théorie des séries”, Revue de Mathématique (Rivista di Matematica) VII, 115–148; translated in Russell (1956).Google Scholar
  112. Bertrand Russell (1903): The Principles of Mathematics, Allen & Unwin, London; 2nd ed. 1937.Google Scholar
  113. Bertrand Russell (1908): “Mathematical Logic as Based on the Theory of Types”, American Journal of Mathematics 28, 222–262; reprinted in Russell (1956).Google Scholar
  114. Bertrand Russell (1914): “On the Nature of Acquaintance”, The Monist XXIV, 1–16, 161–187, 435–453; reprinted in Russell (1956).Google Scholar
  115. Bertrand Russell (1956): Logic and Knowledge: Essays 1901–1950, edited by Robert Charles Marsh, Allen & Unwin, London.Google Scholar
  116. Paul Arthur Schilpp (ed.) (1944): The Philosophy of Bertrand Russell, Library of Living Philosophers V, Northwestern University Press, Evanston IL.Google Scholar
  117. Paul Arthur Schilpp (ed.) (1963): The Philosophy of Rudolf Carnap, Library of Living Philosophers XI, Open Court Publishing Co., La Salle IL.Google Scholar
  118. Ernst Schröder (1890–1905): Vorlesungen über die Algebra der Logik I–III, Leipzig.Google Scholar
  119. Abner Shimony (1953): A Theory of Confirmation, Ph.D. dissertation at Yale University.Google Scholar
  120. Abner Shimony (1955): “Coherence and the Axioms of Confirmation”, Journ. o. Sym. Log. 20, 1–28.CrossRefGoogle Scholar
  121. Friedrich Stadler (ed.) (2000): Elemente moderner Wissenschaftstheorie, Veröffentlichungen des Instituts Wiener Kreis 8, Springer-Verlag, Vienna.Google Scholar
  122. Leo Szilárd (1929): “Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen”, Zeitschrift für Physik, 53, 840–856; translated as “On the Decrease of Entropy in a Thermodynamic System by the Intervention of Intelligent Beings” by Anatol Rapoport and Mechthilde Knoller in Behavioral Science, 9, 301–310; the latter reprinted in Szilard (1972).CrossRefGoogle Scholar
  123. Leo Szilárd (1972): The Collected Works of Leo Szilard: Scientific Papers, ed. by B.T. Field and G. Weiss, MIT Press, Cambridge MA.Google Scholar
  124. William W. Tait (ed.) (1997): Early Analytic Philosophy: Frege, Russell, Wittgenstein, Open Court Publishing Co., La Salle IL.Google Scholar
  125. Hao Wang (1974): From Mathematics to Philosophy, Humanities Press, New York; Ch. VI “The Concept of Set” is reprinted in Benacerraf & Putnam (1983).Google Scholar
  126. Hao Wang (1987): Reflections on Kurt Gödel, MIT Press, Cambridge MA.Google Scholar
  127. Hao Wang (1996): A Logical Journey: From Gödel to Philosophy, MIT Press, Cambridge MA.Google Scholar
  128. Alfred North Whitehead and Bertrand Russell (1914): Principia Mathematica, Cambridge University Press, Cambridge; the 2nd edition of 1925 included a long new Introduction largely influenced by Ramsey.Google Scholar
  129. Catherine Wilson (1989): Leibniz’s Metaphysics: A Historical and Comparative Study, Princeton University Press, Princeton.Google Scholar
  130. Ernst Zermelo (1904): “Beweis, dass jede Menge wohlgeordnet werden kann”, Mathematische Annalen 59, 139–141; translated in van Heijenoort (1967).CrossRefGoogle Scholar
  131. Ernst Zermelo (1908): “Neuer Beweis für die Möglichkeit einer Wohlordnung”, Mathematische Annalen 65, 107–128; translated in van Heijenoort (1967).CrossRefGoogle Scholar
  132. Ernst Zermelo (1908a): “Untersuchungen über die Grundlagen der Mengenlehre I”, Mathematische Annalen 65, 261–281; translated in van Heijenoort (1967).CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Eckehart Köhler
    • 1
  1. 1.Dept. of Business AdministrationUniversity of Vienna — BWZViennaAustria

Personalised recommendations