Skip to main content

Roles of aquaporins in root responses to irrigation

  • Chapter
Root Physiology: from Gene to Function

Part of the book series: Plant Ecophysiology ((KLEC,volume 4))

Abstract

Due to current environmental issues concerning the use of water for irrigation, the improvement of crop water-use efficiency and a reduction in water consumption has become a priority. New irrigation methods that reduce water use, while still maintaining production have been developed. To optimise these techniques knowledge of above- and below-ground plant physiological responses is necessary. During growth, plant roots are exposed to cycles of wetting and drying in normal rain-fed and irrigation situations. This review concentrates on the below-ground aspects, in particular the water permeability of roots. Significant research has been conducted on the root anatomy and hydraulic conductivity of desert plants subjected to wetting and drying. Major intrinsic proteins (MIPs), most of which show aquaporin (water-channel) activity are likely to be involved in balancing the water relations of the plants during water deficit. However, many MIPs seem to allow permeation of other small neutral solutes and some may allow permeation of ions under certain conditions. The ability of the plant to rapidly respond to rewetting may be important in maintaining productivity. It has been suggested that aquaporins may be involved in this rapid response. The down-regulation of the aquaporins during dry conditions can also limit water loss to the soil, and intrinsic sensitivity of aquaporins to water potential is shown here to be very strong in some cases (NOD26). However, the response of aquaporins in various plant species to water deficits has been quite varied. Another component of aquaporin regulation in response to various stresses (hypoxia/anoxia, salinity and chilling) may be related to redistribution of flow to more favourable regions of the soil. Some irrigation techniques may be triggering these responses. Diurnal fluctuations of root hydraulic conductance that is related to aquaporin expression seem to match the expected transpirational demands of the shoot, and it remains to be seen if shoot-to-root signalling may be important in regulation of root aquaporins. If so, canopy management typical of horticultural crops may impact on root hydraulic conductance. An understanding of the regulation of aquaporins may assist in the development of improved resistance to water stress and greater efficiency of water use by taking into account where and when roots best absorb water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

MIP:

major intrinsic protein

TIP:

tonoplast intrinsic protein

PIP:

plasma membrane intrinsic protein

L p :

hydraulic conductivity

L o :

hydraulic conductance

P f :

osmotic water permeability

PRD:

partial root zone drying

RDI:

regulated deficit irrigation

References

  • Adler P R, Wilcox G E, and Markhart III A H 1996 Ammonium decreases muskmelon root system hydraulic conductivity. J. Plant Nutr. 19, 1395–1403.

    CAS  Google Scholar 

  • Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y and Galili G 2003 Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15, 439–447.

    Article  CAS  PubMed  Google Scholar 

  • Azaizeh H, Gunse B and Steudle E 1992 Effects of NaCl and CaCl2 on Water Transport across Root Cells of Maize (Zea mays L.) Seedlings, Plant Physiol. 99, 886–894.

    CAS  Google Scholar 

  • Azaizeh H and Steudle E 1991 Effects of salinity on water transport of excised maize (Zea mays L.) roots. Plant Physiol. 97, 1136–1145.

    CAS  Google Scholar 

  • Baiges I, Schäffner A R and Mas A 2001 Eight cDNA encoding putative aquaporins in Vitis hydbrid Richter-110 and their differential expression. J. Exp. Bot. 52, 1949–1951.

    Article  CAS  PubMed  Google Scholar 

  • Barrieu F, Chaumon F and Chrispeels M J 1998 High expression of the tonoplast aquaporin ZmTIP1 in epidermal and conducting tissues of maize. Plant Physiol. 117, 1153–1163.

    Article  CAS  PubMed  Google Scholar 

  • Barrowclough D E, Peterson C A and Steudle E 2000 Radial hydraulic conductivity along developing onion roots. J. Exp. Bot. 51, 547–557.

    Article  CAS  PubMed  Google Scholar 

  • Barthes L, Deléens E, Bousser A, Hoarau J and Prioul J-L 1996 Xylem exudation is related to nitrate assimilation pathway in detopped maize seedlings: use of nitrate reductase and glutamine synthase inhibitors as tools. J. Exp. Bot. 47, 485–495.

    CAS  Google Scholar 

  • Biela A, Grote K, Otto B, Hoth S, Hederich R and Kaldenhoff R 1999 The Nicotiana tabacum plasma membrane aquaporin NtAQP1 is mercury insensitive and permeable to glycerol. Plant J. 18, 565–570.

    Article  CAS  PubMed  Google Scholar 

  • Birner T P and Steudle E 1993 Effects of anaerobic conditions on water and solute relations, and on active-transport in roots of maize (Zea mays L.). Planta 190, 474–483.

    Article  CAS  Google Scholar 

  • Bloom A J, Zwieniecki M A, Passioura J B, Randall L B, Holbrook N M and St Clair D A 2004 Water relations under root chilling in a sensitive and tolerant tomato species. Plant Cell Environ 27, 971–979.

    Article  Google Scholar 

  • Carvajal M, Cooke D T and Clarkson D T 1996 Responses of wheat plants to nutrition deprivation may involve the regulation of water-channel function. Planta 199, 372–381.

    Article  CAS  Google Scholar 

  • Cabanero F J, Martinez V and Carvajal M 2004 Does calcium determine water uptake under saline conditions in pepper plants, or is it water flux which determines calcium uptake? Plant Sci. 166, 443–450.

    CAS  Google Scholar 

  • Carvajal M, Cerda A and Martinez V 2000 Does calcium ameliorate the negative effect of NaCl on melon root water transport by regulating aquaporin activity? New Phytol. 145, 439–447.

    Article  CAS  Google Scholar 

  • Carvajal M, Martinez V and Alcaraz F C 1999 Physiological function of water channels as affected by salinity in roots of paprika pepper. Physiol. Plant. 105, 95–101.

    Article  CAS  Google Scholar 

  • Chahine M T 1992 The hydrological cycle and its influence on climate. Nature 3509, 373–380.

    Google Scholar 

  • Chaumont F, Barrieu F, Jung R and Chrispeels M J 2000 Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiol. 122, 1025–1034.

    Article  CAS  PubMed  Google Scholar 

  • Chaumont F, Barrieu F, Wojcik E, Chrispeels M J and Jung R 2001 Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol. 125, 1206–1215.

    Article  CAS  PubMed  Google Scholar 

  • Chrispeels M J, Morillon R, Maurel C, Gerbeau P, Kjellbom P and Johansson I 2001 Aquaporins in plants: structure, function, regulation and role in plant water relations. Curr Top Membr Aqaporins 51, 277–334.

    CAS  Google Scholar 

  • Clarkson D T, Carvajal M, Henzler T, Waterhouse R N, Smyth A J, Cooke D T and Steudle E. 2000 Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. J. Exp. Bot. 51, 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Cochard H, Martin R, Gross P and Bogeat-Triboulot M B 2000 Temperature effects on hydraulic conductance and water relations of Quercus robur L. J. Exp. Bot. 51, 1255–1259.

    Article  CAS  PubMed  Google Scholar 

  • Colmer T D 2003 Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 26, 17–36.

    Article  CAS  Google Scholar 

  • Cruz R T, Jordan W R and Drew M C 1992 Structural changes and associated reduction of hydraulic conductance in roots of Sorghum bicolour L following exposure to water deficit. Plant Physiol. 99, 203–212.

    CAS  Google Scholar 

  • Davies W J, Rodriguez J L and Fiscus E L 1982 Stomatal behaviour and water movement through roots of wheat plants treated with abscisic acid. Plant Cell Environ. 5, 485–493.

    Google Scholar 

  • Dodd I C 2005 Root-to-shoot signalling. Plant Soil 274, 251–270

    Article  CAS  Google Scholar 

  • Dry P R 1997 Response of grapevines to partial drying of the root system. Doctoral Thesis University of Adelaide, Australia.

    Google Scholar 

  • Dry P R and Loveys B R 1998 Factors influencing grapevine vigour and the potential for control with partial rootzone drying. Aust. J. Grape Wine Res. 4, 140–148.

    Google Scholar 

  • Dry P R and Loveys B R 1999 Grapevine shoot growth and stomatal conductance are reduced when part of the root system is dried. Vitis 38, 151–156.

    Google Scholar 

  • Dry P R, Loveys B R and During H 2000 Partial drying of the rootzone of grape I Transient changes in shoot growth and gas exchange. Vitis 39, 3–7.

    Google Scholar 

  • Dubrovsky J G, North G B and Nobel P S 1998 Root growth developmental changes in the apex and hydraulic conductivity for Opuntia ficus-indica during drought. New Phytol. 138, 75–82.

    Article  Google Scholar 

  • During H 1990 Stomatal adaptation of grapevine leaves to water stress. Proceedings 5th Int. Symp. Grapevine Breeding. Vitis Special Issue, 366–370.

    Google Scholar 

  • Eckert M, Biela A, Siefritz F and Kaldenhoff R 1999 New aspects of plant aquaporin regulation and specificity. J. Exp. Bot. 50, 1541–1545.

    Article  CAS  Google Scholar 

  • Fennell A and Markhart A H 1998 Rapid acclimation of root hydraulic conductivity to low temperature. J. Exp. Bot. 49, 879–884.

    Article  CAS  Google Scholar 

  • Fetter K, Van Wilder V, Moshelion M and Chaumont F 2004 Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell 16, 215–228.

    Article  CAS  PubMed  Google Scholar 

  • Fizames C, Munos S, Cazettes C, Nacry P, Boucherez J, Gaymard F, Piquemal D, Delorme V, Commes T, Doumas P, Cooke R, Marti J, Sentenac H and Gojon A 2004 The Arabidopsis root transcriptome by serial analysis of gene expression. Gene identification using the genome sequence. Plant Physiol. 134, 67–80.

    Article  CAS  PubMed  Google Scholar 

  • Foreman J, Demidchik V, Bothwell J H F, Mylona P, Miedema H, Torres M A, Linstead P, Costa S, Brownlee C, Jones J D G, Davies J M and Dolan L 2003 Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422, 442–446.

    Article  CAS  PubMed  Google Scholar 

  • Frensch J and Steudle E 1989 Axial and radial hydraulic resistance to roots of maize (Zea mays L.). Plant Physiol. 91, 719–726.

    Google Scholar 

  • Gaspar M, Bousser A, Sissoeff I, Roche O, Hoarau J and Mahe A 2003 Cloning and characterization of ZmPIP1-5b, and aquaporin transporting water and urea. Plant Sci. 165, 21–31.

    Article  CAS  Google Scholar 

  • Gaspar M, Sissoeff I, Bousser A, Roche O, Mahe A and Hoarau J 2001 Transient variations of water transfer induced by HgCl2 in excised roots of young maize plants: new data on the inhibition process. Aust. J. Plant Physiol. 28, 1175–1186.

    CAS  Google Scholar 

  • Gerbeau P, Guclu J, Ripoche P and Maurel C 1999 Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. Plant J. 18, 577–587.

    Article  CAS  PubMed  Google Scholar 

  • Gerbeau P, Amodeo G, Henzler T, Santoni V, Ripoche P and Maurel C 2002 The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH. Plant J. 30, 71–81.

    Article  CAS  PubMed  Google Scholar 

  • Gibbs J, Turner D W, Armstrong W, Sivasithamparam K and Greenway H 1998 Response to oxygen deficiency in primary maize roots. II. Development of oxygen deficiency in the stele has limited short-term impact on radial hydraulic conductivity. Aust. J. Plant Physiol. 25, 759–763.

    CAS  Google Scholar 

  • Gowing D J G, Davies W J and Jones H G 1990 A positive root-sourced signal as an indicator of soil drying in apple Malusdomestica Borkh. J. Exp. Bot. 41, 1535–1540.

    Google Scholar 

  • Guenther J F, Chanmanivone N, Galetovic M P, Wallace I S, Cobb J A and Roberts D M 2003 Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals. Plant Cell 15, 981–991.

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Brück H, and Sattelmacher B 2002 Effects of supplied nitrogen form on growth and water uptake of French bean (Phaseolus vulgaris L.) plants. Plant Soil 239, 267–275.

    Article  CAS  Google Scholar 

  • Hartung W Sauter A and Hose E 2002 Abscisic acid in the xylem, where does it come from where does it go to? J. Exp. Bot. 53, 27–32.

    CAS  PubMed  Google Scholar 

  • Henzler T. and Steudle E. 2000 Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J. Exp. Bot. 51, 2053–2066.

    Article  CAS  PubMed  Google Scholar 

  • Henzler T, Waterhouse R N, Smyth A J, Carvajal M, Cooke D T, Schäffner A R, Steudle E and Clarkson D T 1999 Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of Lotus japonicus. Planta 210, 50–60.

    Article  CAS  PubMed  Google Scholar 

  • Hill AE, Shachar-Hill B and Shachar-Hill Y 2004 What are aquaporins for? J. Membr. Biol. 197, 1–32.

    Article  CAS  PubMed  Google Scholar 

  • Hoarau J, Barthes L, Bousser A, Deleens E and Prioul J L 1996 Effect of nitrate on water transfer across roots of nitrogen pre-starved maize seedlings. Planta 200, 405–415.

    Article  CAS  Google Scholar 

  • Hose E, Clarkson D T, Steudle E, Schreiber L and Hartung W 2001 The exodermis: a variable apoplastic barrier. J. Exp. Bot. 52, 2245–2264.

    Article  CAS  PubMed  Google Scholar 

  • Hose E, Steudle E and Hartung W 2000 Abscisic acid and hydraulic conductivity of maize roots, a study using cell and root-pressure probes. Planta 211, 874–882.

    Article  CAS  PubMed  Google Scholar 

  • Hukin D, Doering-Saad C, Thomas C R and Pritchard J 2002 Sensitivity of cell hydraulic conductivity to mercury is coincident with symplasmic isolation and expression of plasmalemma aquaporin genes in growing maize roots. Planta 215, 1047–1056.

    CAS  PubMed  Google Scholar 

  • Javot H, Lauvergeat V, Santoni V, Martin-Laurent F, Guclu J, Vinh J, Heyes J, Franck K I, Schaffner A R, Bouchez D and Maurel C 2003 Role of a single aquaporin isoform in root water uptake. Plant Cell 15, 509–522.

    Article  CAS  PubMed  Google Scholar 

  • Javot H and Maurel C 2002 The role of aquaporins in root water uptake. Ann. Bot. 90, 301–313.

    Article  CAS  PubMed  Google Scholar 

  • Johnson K D and Chrispeels M J 1992 Tonoplast-bound protein kinase phophorylates tonoplast intrinsic protein. Plant Physiol. 100, 1787–1795.

    CAS  Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, Weig A R and Kjellbom P 2001 The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol. 126, 1358–1369.

    Article  CAS  PubMed  Google Scholar 

  • Johansson I, Karlsson M, Johanson U, Larsson C and Kjellbom P 2000 The role of aquaporins in cellular and whole plant water balance. Biochim. Biophys. Acta Biomembranes 1465, 324–342.

    CAS  Google Scholar 

  • Johansson I, Karlsson M, Shukla V K, Chrispeels M J, Larsson C and Kjellbom P 1998 Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10, 451–459.

    Article  CAS  PubMed  Google Scholar 

  • Kaldenhoff R, Grote K, Zhu J and Zimmeramann U 1998 Significance of plasmalemma aquaporins for watertransport in Arabidopsis thaliana. Plant J. 14, 121–128.

    Article  CAS  PubMed  Google Scholar 

  • Kaldenhoff R G, Kolling A and Richter G 1996 Regulation of the Arabidopsis thaliana gene AthH2 PIP1b. J. Photochem. Photobiol. 36, 351–354.

    CAS  Google Scholar 

  • Kamaluddin M and Zwiazek J J 2001 Metabolic inhibition of root water flow in red-osier dogwood (Cornus stolonifera) seedlings. J. Exp. Bot. 52, 739–745.

    CAS  PubMed  Google Scholar 

  • Kjellbom P, Larsson C, Johansson I, Karlsson M and Johanson U 1999 Aquaporins and water homeostasis in plants. Trends Plant Sci. 4, 308–314.

    Article  PubMed  Google Scholar 

  • Klok E J, Wilson I W, Wilson D, Chapman S C, Ewing R M, Somerville S C, Peacock W J, Dolferus R and Dennis E S 2002 Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14, 2481–2494.

    Article  CAS  PubMed  Google Scholar 

  • Kriedemann P E and Goodwin I 2003 Regulated Deficit Irrigation and Partial Rootzone Drying Land & Water Australia, Canberra.

    Google Scholar 

  • Lee S H, Singh A P, Chung G C, Ahn S J, Noh E K and Steudle E 2004a Exposure of roots of cucumber (Cucumis sativus) to low temperature severely reduces root pressure, hydraulic conductivity and active transport of nutrients. Physiol. Plant. 120, 413–420.

    Article  CAS  PubMed  Google Scholar 

  • Lee S H, Singh A P and Chung G C 2004b Rapid accumulation of hydrogen peroxide in cucumber roots due to exposure to low temperature appears to mediate decreases in water transport. J. Exp. Bot. 55, 1733–1741.

    Article  CAS  PubMed  Google Scholar 

  • Liu L H, Ludewig U, Gassert B, Frommer W B and von Wirén N 2003 Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol. 133, 1220–1228.

    Article  CAS  PubMed  Google Scholar 

  • Lo Gullo M A, Nardini A, Salleo S and Tyree M T 1998 Changes in root hydraulic conductance (KR) of Olea oleaster seedlings following drought stress and irrigation. New Phytol. 140, 25–31.

    Google Scholar 

  • Lopez F, Bousser A, Sissoeff I, Hoarau J and Mahe A 2004 Characterization in maize of AmTIP 2-3 a root-specific tonoplast intrinsic protein exhibiting aquaporin activity. J. Exp. Bot. 55, 539–541.

    Article  CAS  PubMed  Google Scholar 

  • Loveys B, Stoll M, Dry P and McCarthy M 1998 Partial rootzone drying stimulates stress responses in grapevine to improve water use efficiency while maintaining crop yield and quality. Aust. Grapegrower Winemaker 114, 108–113.

    Google Scholar 

  • Lovisolo C, Hartung W and Schubert A 2002 Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevines. Funct. Plant Biol. 29, 1349–1356.

    Article  CAS  Google Scholar 

  • Maathuis F J M, Filatov V, Herzyk P, Krijger G C, Axelsen K B, Chen S, Green B J, Li Y, Madagan K L, Sanchez-Fernandez R, Forde B G, Palmgren M G, Rea P A, Williams L E, Sanders D and Amtmann A 2003 Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J. 35, 675–692.

    Article  CAS  PubMed  Google Scholar 

  • Mariaux J-B, Bockel C, Salamini F and Bartels D 1998 Dessication-and abscisic acid-responsive genes encoding major intrinisic proteins MIPs from the resurrection plant Craterostigma plantagineum. Plant Mol. Biol. 38, 1089–1099.

    Article  CAS  PubMed  Google Scholar 

  • Markhart A H 1984 Amelioration of chilling-induced water stress by abscisic acid-induced changes in root hydraulic conductance. Plant Physiol. 74, 81–83.

    CAS  Google Scholar 

  • Markhart A H, Fiscus E L, Naylor A W and Kramer P J 1979 Effect of temperature on water and ion transport in soybean and broccoli systems. Plant Physiol. 64, 83–87.

    CAS  Google Scholar 

  • Martre P, Morillon R, Barrieu F, North G B, Nobel P S and Chrispeels M J 2002 Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiol. 130, 2101–2110.

    Article  CAS  PubMed  Google Scholar 

  • Martre P, North G B and Nobel P S 2001 Hydraulic conductance and mercury-sensitive water transport for roots of Opuntia acanthocarpa in relation to soil drying and rewetting. Plant Physiol. 126, 352–362.

    Article  CAS  PubMed  Google Scholar 

  • Maurel C 1997 Aquaporins and water permeability of plant membranes Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 399–429.

    Article  CAS  PubMed  Google Scholar 

  • Maurel C, Javot H, Lauvergeat V, Gerbeau P, Tournaire C, Santoni V and Heyes J 2002 Molecular physiology of aquaporins in plants. Int. Rev. Cytol. 215, 105–148.

    CAS  PubMed  Google Scholar 

  • Maurel C, Kado R T, Guern J and Chrispeels M J 1995 Phophorylation regulates the water channels activity of the seed-specific aquaporin α-TIP. EMBO J. 14, 3028–3035.

    CAS  PubMed  Google Scholar 

  • Maurel C, Reizer J, Schroeder J I and Chrispeels M J 1993 The vacuolar membrane protein γ-TIP creates water specific channels in Xenopus oocytes. EMBO J. 12, 2241–2247.

    CAS  PubMed  Google Scholar 

  • Melkonian J, Yu L-X and Setter T L 2004 Chilling responses of maize (Zea mays L.) seedlings: root hydraulic conductance, abscisic acid, and stomatal conductance. J. Exp. Bot. 55, 1751–1760.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P D and Goodwin I 1996 Manipulating tree growth. In Micro-irrigation of Vines and Fruit Trees. Eds. P D Mitchell and I Goodwin. pp. 29–34. Agmedia, East Melbourne.

    Google Scholar 

  • Moshelion M, Moran N and Chaumont F 2004 Dynamic changes in the osmotic water permeability of protoplast plasma membrane. Plant Physiol. 135 (in press)

    Google Scholar 

  • Mori I C and Schroeder J I 2004 Reactive oxygen species activation of plant Ca2+ channels. A signalling mechanism in polar growth, hormone transduction, stress signalling, and hypothetically mechanotransduction. Plant Physiol. 135, 702–708.

    Article  CAS  PubMed  Google Scholar 

  • Munns R and Passioura J B 1984 Hydraulic resistance of plants. III. Effects of NaCl in Barley and Lupin. Aust. J. Plant Physiol. 11, 351–359

    CAS  Google Scholar 

  • Neales T F, Masia A, Zhang J and Davies W J 1989 The effects of partially drying part of the root system of Helianthus annuus on the abscisic acid content of the roots xylem sap and leaves. J. Exp. Bot. 40, 1113–1120.

    CAS  Google Scholar 

  • Niemietz C M and Tyerman S D 1997 Characterization of water channels in wheat root membrane vesicles. Plant Physiol. 115, 561–567.

    CAS  PubMed  Google Scholar 

  • Niemietz C M and Tyerman S D 2000 Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules. FEBS Lett. 465, 110–114.

    Article  CAS  PubMed  Google Scholar 

  • Niemietz C M and Tyerman S D 2002 New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Lett. 531, 443–447.

    Article  CAS  PubMed  Google Scholar 

  • Nobel P S and North G B 1993 Rectifier-like behaviour of root-soil systems, new insights from desert succulents In Water deficits, Plant Responses from Cell to Community Eds. J A C Smith and H Griffiths pp. 163–176. BIOS Scientific Publishers Ltd, Oxford.

    Google Scholar 

  • Nobel P S and Sanderson J 1984 Rectifier-like activities of roots of two desert succulents. J. Exp. Bot. 35, 727–737.

    Google Scholar 

  • North G B and Nobel P S 1991 Changes in hydraulic conductivity and anatomy caused by drying and rewetting roots of Agave deserti Agavaceae. Am. J. Bot. 78, 906–915.

    Google Scholar 

  • North G B and Nobel P S 1995 Hydraulic conductivity of concentric root tissues of Agave deserti Engelm under wet and drying conditions. New Phytol. 130, 47–57.

    Google Scholar 

  • North G B and Nobel P S 1996 Radial hydraulic conductivity of individual root tissues of Pountia ficus-indica L Miller as soil moisture varies. Ann. Bot. 77, 133–142.

    Article  Google Scholar 

  • North G B, Martre P and Nobel P S 2004 Aquaporins account for variations in hydraulic conductance for metabolically active root regions of Agave deserti in wet dry and rewetted soil. Plant Cell Environ. 27, 219–228.

    Article  CAS  Google Scholar 

  • Oono Y, Seki M, Nanjo T, Narusaka M, Fujita M, Satoh R, Satou M, Sakurai T, Ishida J, Akiyama K, Iida K, Maruyama K, Satoh S, Yamaguchi-Shinozaki K and Shinozaki K 2003 Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca 7000 full-length cDNA microarray. Plant J. 34, 868–887.

    Article  CAS  PubMed  Google Scholar 

  • Oliviusson P, Salaj J and Hakman I 2001 Expression pattern of transcripts encoding water channel-like proteins in Norway spruce (Picea abies). Plant Mol. Biol. 46, 289–299.

    Article  CAS  PubMed  Google Scholar 

  • Passioura J B 1984 Hydraulic resistance of plants. I. Constant or variable. Aust. J. Plant Physiol. 11, 333–339.

    Google Scholar 

  • Passioura J B and Munns R 1984 Hydraulic resistance of plants. II. Effects of rooting medium, and time of day, in barley and lupin. Aust. J. Plant Physiol. 11, 341–350.

    Google Scholar 

  • Passioura J B and Tanner C B 1984 Oscillations in apparent hydraulic conductance of cotton plants. Aust. J. Plant Physiol. 12, 455–461.

    Google Scholar 

  • Preston G M, Carroll TP, Guggino W B and Agre P 1992 Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256, 385–387.

    CAS  PubMed  Google Scholar 

  • Quintero J M, Fournier J M and Benlloch M 1999 Water transport in sunflower root systems, effects of ABA, Ca2+ status and HgCl2. J. Exp. Bot. 50, 1607–1612.

    Article  CAS  Google Scholar 

  • Radin J W and Eidenbock M P 1984 Hydraulic conductance as a factor limiting leaf expansion in phosphorus deficient cotton plants. Plant Physiol 75, 372–377.

    CAS  Google Scholar 

  • Radin J W and Mathews M A 1989 Water transport properties of cortical cells in roots of nitrogen-and phosphorusdeficient cotton seedlings. Plant Physiol. 89, 264–268.

    CAS  Google Scholar 

  • Ranathunge K, Kotula L, Steudle E and Lafitte R 2004 Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores. J. Exp. Bot. 55, 433–447.

    Article  CAS  PubMed  Google Scholar 

  • Reinbott T M and Blevins D G 1999 Phosphorus nutritional effects on root hydraulic conductance, xylem water flow and flux of magnesium and calcium in squash plants. Plant Soil 209, 263–273.

    Article  CAS  Google Scholar 

  • Rivers R L, Dean R M, Chandy G, Hall J E, Roberts D M and Zeidel M L 1997 Functional analysis of nodulin 26, an aquaporin in soybean root nodule symbiosomes. J. Biol. Chem. 272, 16256–16261.

    Article  CAS  PubMed  Google Scholar 

  • Santoni V, Vinh J, Pflieger D, Sommerer N and Maurel C 2003 A proteomic study reveals novel insights into the diversity of aquaporin forms expressed in the plasma membrane of plant roots. Biochem. J. 373, 289–296.

    Article  CAS  PubMed  Google Scholar 

  • Sarda X, Tousch D, Ferrare K, Cellier F, Alcon C, Dupuis J M, Casse F and Lamaze T 1999 Characterization of closely related δ-TIP genes encoding aquaporin wheat are differentially expressed in sunflower roots upon water deprivation through exposure to air. Plant Mol. Biol. 40, 179–191.

    Article  CAS  PubMed  Google Scholar 

  • Sauter A, Abrams S R and Hartung W 2002 Structural requirements of abscisic acid (ABA) and its impact on water flow during radial transport of ABA analogues through maize roots. J. Plant Growth Regul. 21, 50–59.

    Article  CAS  PubMed  Google Scholar 

  • Sauter A, Davies W J and Hartung W 2001 The long-distance abscisic acid signal in the droughted plant, the fate of the hormone on its way from root to shoot. J. Exp. Bot. 52, 1991–1997.

    Article  CAS  PubMed  Google Scholar 

  • Schaffner A R 1998 Aquaporin function structure and expression, are there more surprises to surface in water relations? Planta 204, 131–139.

    CAS  PubMed  Google Scholar 

  • Schultz H R 2003 Differences in hydraulic architecture account for near isohydric and anisohydric behavious of two field-grown Vitis vinifera L cultivars during drought. Plant, Cell Environ. 26, 1393–1405.

    Article  Google Scholar 

  • Schraut D, Ullrich C I and Hartung W 2004 Lateral ABA transport in maize roots (Zea mays): visualization by immunolocalization. J. Exp. Bot. 55, 1635–1641.

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carnini P, Hayashizaki Y and Shinozaki K 2001 Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13, 61–72.

    Article  CAS  PubMed  Google Scholar 

  • Siefritz F, Tyree M T, Lovisolo C, Schubert A and Kaldenhoff R 2002 PIP1 plasma membrane aquaporins in tobacco, from cellular effects to function in plants. Plant Cell 14, 869–876.

    Article  CAS  PubMed  Google Scholar 

  • Siemens J A and Zwiazek J J 2003 Effects of water deficit stress and recovery on the root water relations of trembling aspen (Populus tremuloides) seedlings. Plant Sci. 165, 113–120.

    Article  CAS  Google Scholar 

  • Smart L B, Moskal W A, Cameron K D and Bennett A B 2001 MIP genes are down-regulated under drought stress in Nicotiana glauca. Plant Cell Physiol. 427, 686–693.

    Google Scholar 

  • Steudle E 1993 Pressure probe techniques, basic principles and application of studies of water and solute relations at the cell tissue and organ level. In Water Deficits, Plant Responses from Cell to Community. Eds. J A C Smith and H Griffiths. pp. 5–36. BIOS Scientific Publishers Ltd, Oxford.

    Google Scholar 

  • Steudle E 1994 Water transport across roots. Plant Soil 167, 79–90.

    Article  CAS  Google Scholar 

  • Steudle E 2000a Water uptake by plant roots: an integration of views. Plant Soil 226, 45–56.

    Article  CAS  Google Scholar 

  • Steudle E 2000b Water uptake by roots, effects of water deficit. J. Exp. Bot. 51, 1531–1542.

    Article  CAS  PubMed  Google Scholar 

  • Steudle E and Frensch J 1996 Water transport in plants, role of the apoplast. Plant Soil 187, 67–79.

    Article  CAS  Google Scholar 

  • Steudle E and Meshcheryakov A B 1996 Hydraulic and osmotic properties of oak roots. J. Exp. Bot. 47, 387–401.

    CAS  Google Scholar 

  • Steudle E and Peterson C A 1998 How does water get through roots? J. Exp. Bot. 49, 775–788.

    Article  CAS  Google Scholar 

  • Steudle E and Tyerman S D 1983 Determination of permeability coefficients, reflection coefficients, and hydraulic conductivity of Chara corallina using the pressure probe: effects of solute concentrations. J. Membr. Biol. 75, 85–96.

    CAS  Google Scholar 

  • Stoll M 2000 Effects of partial rootzone drying on grapevine physiology and fruit quality. PhD Thesis University of Adelaide, Australia.

    Google Scholar 

  • Stoll M, Loveys B and Dry P 2000 Hormonal changes induced by partial rootzone drying of irrigated grapevine. J. Exp. Bot. 51, 1627–1634.

    Article  CAS  PubMed  Google Scholar 

  • Suga S, Komatsu S and Maeshima M 2002 Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings. Plant Cell Physiol. 43, 1229–1237.

    Article  CAS  PubMed  Google Scholar 

  • Sui H, Han B-G, Lee J K, Walian P and Jap B K 2001 Structural basis of water-specific transport through the AQP1 water channel. Nature 414, 872–878.

    Article  CAS  PubMed  Google Scholar 

  • Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu D T, Bligny R and Maurel C 2003 Cytosolic pH regulates root water transport during anoxia stress through gating of aquaporins. Nature 425, 393–397.

    Article  CAS  PubMed  Google Scholar 

  • Tsuda M and Tyree M T 2000 Plant hydraulic conductance measured by the high pressure flow meter in crop plants. J. Exp. Bot. 51, 823–828.

    Article  CAS  PubMed  Google Scholar 

  • Tyerman S D, Bohnert H J, Maurel C, Steudle E and Smith J A C 1999 Plant aquaporins, their molecular biology biophysics and significance for plant water relations. J. Exp. Bot. 50, 1055–1071.

    Article  CAS  Google Scholar 

  • Tyerman S D, Niemietz C M and Bramley H 2002 Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 125, 173–194.

    Google Scholar 

  • Tyerman S D and Steudle E 1982 Comparison between osmotic and hydrostatic water flows in a higher-plant cell-determination of hydraulic conductivities and reflection coefficients in isolated epidermis of Tradescantia-virginiana. Aust. J. Plant Physiol. 9, 461–479.

    Google Scholar 

  • Tyree M T 2003 Hydraulic properties of roots. In Ecological Studies Vol. 168 Eds. H. de Kroon and E.J.W. Visser. pp. 125–150. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Tyree M T, Patino S, Bennink J and Alexander J 1995 Dynamic meausrements of root hydraulic conductance using a high-pressure flowmeter in the laboratory and field. J. Exp. Bot. 46, 83–94.

    CAS  Google Scholar 

  • Uehlein N, Lovisolo C, Siefritz F and Kaldenhoff R 2003 The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425, 734–736.

    Article  CAS  PubMed  Google Scholar 

  • Vartapetian B B and Jackson M B 1997 Plant adaptations to anaerobic stress. Ann. Bot. 79, 2–20.

    Google Scholar 

  • Vera-Estrella R, Barkla B J, Bohnert H J and Pantoja O 2004 Novel regulation of aquaporins during osmotic stress. Plant Physiol. 135 (in press)

    Google Scholar 

  • Vernieri P, Lenzi A, Figaro M, Tognoni F and Pardossi A 2001 How roots contribute to the ability of Phaseolus vulgaris L. to cope with chilling-induced water stress. J. Exp. Bot. 52, 2199–2206.

    CAS  PubMed  Google Scholar 

  • Wan X, Steudle E and Hartung W 2004 Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses): effects of ABA and of HgCl2. J. Exp. Bot. 55, 411–422.

    Article  CAS  PubMed  Google Scholar 

  • Wan X and Zwiazek J J 2001 Root water flow and leaf stomatal conductance in aspen (Populus tremuloides) seedlings treated with abscisic acid. Planta 213, 741–747.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson S and Davies W J 1997 Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast. Plant Physiol. 113, 559–573.

    CAS  PubMed  Google Scholar 

  • Yamada S Komori T Myers P N Kuwata S Kubo T and Imaseki H 1997 Expression of plasma membrane water channel genes under water stress in Nicotiana excelsior. Plant Cell Physiol. 38, 1226–1231.

    CAS  PubMed  Google Scholar 

  • Ye Q, Wiera B and Steudle E 2004 A cohesion/tension mechanism explains the gating of water channels (aquaporins) in Chara internodes by high concentration. J. Exp. Bot. 55, 449–461.

    Article  CAS  PubMed  Google Scholar 

  • Zeier J and Schreiber L 1997 Chemical composition of hypodermal and endodermal cell walls and xylem vessels isolated from Clivia miniata. Plant Physiol. 113, 1223–1231.

    CAS  PubMed  Google Scholar 

  • Zhang J and Davies WJ 1987 Increased synthesis of ABA in partially dehydrated root tips and ABA transport from roots to leaves. J. Exp. Bot. 38, 2015–2023.

    CAS  Google Scholar 

  • Zhang W-H and Tyerman SD 1991 Effect of low O2 concentration and azide on hydraulic conductivity and osmotic volume of cortical cells of wheat roots. Aust. J. Plant Phys. 18, 603–613.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Tyerman .

Editor information

Hans Lambers Timothy D. Colmer

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Vandeleur, R., Niemietz, C., Tilbrook, J., Tyerman, S.D. (2005). Roles of aquaporins in root responses to irrigation. In: Lambers, H., Colmer, T.D. (eds) Root Physiology: from Gene to Function. Plant Ecophysiology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4099-7_7

Download citation

Publish with us

Policies and ethics