Advertisement

Population Suppression in Support of the Sterile Insect Technique

  • R. L. Mangan

Summary

Suppression or eradication of insect pest populations by the release of sterile insects is often dependent on supplementary methods of pest reduction to levels where the target pest population can be overflooded with sterile insects. Population suppression activities take place in advance of, or coincide with, the production of sterile insects. Supplementary methods to remove breeding opportunities, or management methods that prevent access of pests to the hosts, may reduce the population or prevent damage. Insecticides have been used widely in direct applications or applied as baits, in traps, or on specific sites where the pest makes contact or reproduces. As sterile insect release does not kill the pest, adult biting pests or fertile mated females of the pests will continue to attack hosts after the release of sterile insects. Thus supplementary pest suppression programmes and quarantine measures are essential to prevent damage or the spread of disease. Eradication or effective pest management requires that the entire population of the pest be treated, or that the programme apply immigration barriers. When supplementary pest control activities benefit the human population in areas being treated, such as in mosquito or screwworm eradication programmes, these activities are usually acceptable to the public, but when the public receives no direct benefit from supplementary control activities such as in fruit fly programmes, social resistance may develop.

Keywords

Pest Population Sterile Insect Technique Mating Disruption Population Suppression Pink Bollworm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  1. Asman, S. M., P. T. McDonald, and T. Prout. 1981. Field studies of genetic control systems for mosquitoes. Annual Review of Entomology 26: 289–318.CrossRefPubMedGoogle Scholar
  2. Back, E. A., and C. E. Pemberton. 1918. The Mediterranean fruit fly in Hawaii. USDA Bulletin 538.Google Scholar
  3. Bloem, K. A., and S. Bloem. 2000. SIT for codling moth eradication in British Columbia, Canada, pp. 207–214. In K. H. Tan (ed.), Proceedings: Area-Wide Control of Fruit Flies and Other Insect Pests. International Conference on Area-Wide Control of Insect Pests, and the 5th International Symposium on Fruit Flies of Economic Importance, 28 May–5 June 1998, Penang, Malaysia. Penerbit Universiti Sains Malaysia, Pulau Pinang, Malaysia.Google Scholar
  4. Bloem, S., K. A. Bloem, and A. L. Knight. 1998. Oviposition by sterile codling moths, Cydia pomonella (Lepidoptera: Tortricidae) and control of wild populations with combined releases of sterile moths and egg parasitoids. Journal of the Entomological Society of British Columbia 95: 99–109.Google Scholar
  5. Bloem, S., K. A. Bloem, J. E. Carpenter, and C. O. Calkins. 2001. Season-long releases of partially sterile males for control of codling moth (Lepidoptera: Tortricidae) in Washington apples. Environmental Entomology 30: 763–769.Google Scholar
  6. Calkins, C. O., A. L. Knight, G. Richardson, and K. A. Bloem. 2000. Area-wide population suppression of codling moth, pp. 215–219. In K. H. Tan (ed.), Proceedings: Area-Wide Control of Fruit Flies and Other Insect Pests. International Conference on Area-Wide Control of Insect Pests, and the 5th International Symposium on Fruit Flies of Economic Importance, 28 May–5 June 1998, Penang, Malaysia. Penerbit Universiti Sains Malaysia, Pulau Pinang, Malaysia.Google Scholar
  7. Carde, R. T., and A. K. Minks. 1995. Control of moth pests by mating disruption: successes and constraints. Annual Review of Entomology 40: 559–585.CrossRefGoogle Scholar
  8. Coppedge, J. R., C. J. Whitten, F. H. Tannahill, H. E. Brown, J. W. Snow, and H. C. Hofmann. 1980a. Investigation of a recurring screwworm problem in the municipality of Aldama, Tamaulipas, Mexico. USDA/APHIS Publication, APHIS 91–52.Google Scholar
  9. Coppedge, J. R., H. E. Brown, J. L. Goodenough, F. H. Tannahill, J. W. Snow, H. D. Petersen, and H. C. Hofmann. 1980b. Field performance of a new formulation of the screwworm adult suppression system. Journal of Economic Entomology 73: 411–414.Google Scholar
  10. Crawford, D. L. 1927. Investigation of Mexican fruit fly (Anastrepha ludens Loew) in Mexico. Monthly Bulletin, Department of Agriculture, California 16: 422–445.Google Scholar
  11. Cunningham, R. T. 1989. Parapheromones, pp. 221–230. In A. S. Robinson and G. Hooper (eds.), World crop pests, Volume 3A. Fruit flies. Their biology, natural enemies and control. Elsevier, Amsterdam, The Netherlands.Google Scholar
  12. Curtis, C. F. 1977. Testing systems for the genetic control of mosquitoes, pp. 106–128. In Proceedings, XV International Congress of Entomology, Washington, D. C., USA.Google Scholar
  13. Curtis, C. F. 2002. Control of malaria vectors in Africa and Asia. In Radcliffe’s IPM World textbook, University of Minnesota National IPM Network. http://ipmworld.umn.edu/chapters/curtiscf.htmGoogle Scholar
  14. Curtis, C. F., and M. H. Andreasen. 2000. Large-scale control of mosquito vectors of disease, pp. 135–142. In K. H. Tan (ed.), Proceedings: Area-Wide Control of Fruit Flies and Other Insect Pests. International Conference on Area-Wide Control of Insect Pests, and the 5th International Symposium on Fruit Flies of Economic Importance, 28 May–5 June 1998, Penang, Malaysia. Penerbit Universiti Sains Malaysia, Pulau Pinang, Malaysia.Google Scholar
  15. Dame, D. A., D. L. Williamson, P. E. Cobb, D. B. Gates, P. V. Warner, A. G. Mtuya, and H. Baumgartner. 1980. Integration of sterile insects and pesticides for the control of the tsetse fly Glossina morsitans morsitans, pp. 267–280. In Proceedings, Symposium: Isotope and Radiation Research on Animal Diseases and their Vectors. Food and Agriculture Organization of the United Nations/International Atomic Energy Agency, 7–11 May 1979, Vienna, Austria. STI/PUB/525. IAEA, Vienna, Austria.Google Scholar
  16. Douthwaite, R. J. 1992. Environmental effects of tsetse control operations. World Animal Review 70/71.Google Scholar
  17. Dove, W. E. 1938. Screwworm control. Leaflet, United States Department of Agriculture.Google Scholar
  18. Du Toit, R. 1954. Trypanosomiasis in Zululand and the control of tsetse flies by chemical means. Onderstepoort Journal of Veterinary Research 26: 317–387.Google Scholar
  19. Dyck, V. A., S. H. Graham, and K. A. Bloem. 1993. Implementation of the sterile insect release programme to eradicate the codling moth, Cydia pomonella (L.) (Lepidoptera: Olethreutidae), in British Columbia, Canada, pp. 285–297. In Proceedings: Management of Insect Pests: Nuclear and Related Molecular and Genetic Techniques. FAO/IAEA International Symposium, 19–23 October 1992, Vienna, Austria. STI/PUB/909. IAEA, Vienna, Austria.Google Scholar
  20. Flint, H. M., S. Kuhn, B. Horn, and H. A. Sallam. 1974. Early season trapping of pink bollworm with gossyplure. Journal of Economic Entomology 67: 738–740.Google Scholar
  21. Foster, R. N., R. T. Staten, and E. Miller. 1977. Evaluation of traps for pink bollworm. Journal of Economic Entomology 70: 289–291.Google Scholar
  22. Gaston, L. K., R. S. Kaae, H. H. Shorey, and D. Sellers. 1977. Controlling the pink bollworm by disrupting sex pheromone communication between adult moths. Science 196: 904–905.PubMedGoogle Scholar
  23. Graham, O. H. 1979. The chemical control of screwworms: a review. The Southwestern Entomologist 4: 258–264.Google Scholar
  24. Graham, P. 1964. Destruction of birds and other wildlife, by dieldrex spraying against tsetse fly in Bechuanaland. Arnoldia 1: 1–4.Google Scholar
  25. Hummel, H. E., L. K. Gaston, H. H. Shorey, R. S. Kaae, K. J. Byrne, and R. M. Silverstein. 1973. Clarification of the chemical status of the pink bollworm sex pheromone. Science 181: 873–875.Google Scholar
  26. Jayaraman, K. S. 1997. Consortium aims to revive sterile-mosquito project. Nature 389: 6.Google Scholar
  27. Jenkins, J. W. 2002. Use of mating disruption in cotton in North and South America, pp. 21–26. In P. Witzgall, B. Mazomenos and M. Konstantopoulou (eds.), Proceedings: Pheromones and Other Biological Techniques for Insect Control in Orchards and Vineyards. International Organisation for Biological and Integrated Control of Noxious Animals and Plants, West Palaearctic Regional Section, 25–29 September 2000, Samos, Greece. IOBC/WPRS Bulletin 25(9), 2002. IOBC, Zürich, Switzerland.Google Scholar
  28. Jones, W. A., and M. Jacobson. 1968. Isolation of N, N-Diethyl-mtoluamide (DEET) from pink bollworm moths. Science 159: 99–100.PubMedGoogle Scholar
  29. Jones, W. A., M. Jacobson, and D. F. Martin. 1966. Sex attractant of the pink bollworm moth: isolation, identification, and synthesis. Science 152: 1516–1517.Google Scholar
  30. Judd, G. J. R., M. G. T. Gardiner, and D. R. Thomson. 1992. Management of codling moth with pheromones. British Columbia Orchardist 15(3): 12–15.Google Scholar
  31. Keller, J. C., L. W. Sheets, N. Green, and M. Jacobson. 1969. Cis-7-hexadecen-1-ol-acetate [Hexalure], a synthetic sex attractant for pink bollworm males. Journal of Economic Entomology 62:1520–1521.PubMedGoogle Scholar
  32. Knipling, E. F. 1939. Field tests of larvicides and wound protectors of natural screwworm cases, Menard, Texas, 1938: a special report. Excerpts Southeastern Eradication Records, Screwworm Eradication Collection, Special Collections, National Agricultural Library. http://www.nal.usda.gov/speccoll/screwworm/Google Scholar
  33. Knipling, E. F. 1979. The basic principles of insect population suppression and management. Agriculture Handbook Number 512. SEA, USDA, Washington, DC, USA.Google Scholar
  34. Knipling, E. F. 1992. Principles of insect parasitism analyzed from new perspectives: practical implications for regulating insect populations by biological means. Agriculture Handbook Number 693. USDA/ARS, Washington, DC, USA.Google Scholar
  35. Knipling, E. F. 1998. Sterile insect and parasite augmentation techniques: unexploited solutions for many insect pest problems. Florida Entomologist 81: 134–160. http://www.fcla.edu/FlaEnt/fe81p134.pdfGoogle Scholar
  36. Knipling, E. F. 1999. Analysis of the suppression characteristics and efficiency of various methods of tsetse control (Diptera: Glossinidae), pp. 141–177. In Proceedings: Animal Trypanosomosis: Vector and Disease Control Using Nuclear Techniques. Second FAO/IAEA Seminar for Africa, 27 November–1 December 1995, Zanzibar, Tanzania. Backhuys Publishers, Leiden, The Netherlands.Google Scholar
  37. Laake, E. W., and E. C. Cushing. 1930. Fly trapping on the ranges of the Southwest. Journal of Economic Entomology 23: 966–972.Google Scholar
  38. Langley, P. A. 1999. Prospects for using insect growth regulators in conjunction with the sterile insect technique for tsetse control, pp. 123–127. In Proceedings: Animal Trypanosomosis: Vector and Disease Control Using Nuclear Techniques. Second FAO/IAEA Seminar for Africa, 27 November–1 December 1995, Zanzibar, Tanzania. Backhuys Publishers, Leiden, The Netherlands.Google Scholar
  39. Leak, S. G. A. 1999. Tsetse biology and ecology. Their role in epidemiology and control of trypanosomosis. CABI Publishing, Wallingford, UK.Google Scholar
  40. Mackley, J. W., and H. E. Brown. 1985. Screwworm research 1976–84: attractants, behavior, ecology, and development of survey and control technologies, pp. 49–66. In O. H. Graham (ed.), Symposium: Eradication of the Screwworm. Miscellaneous Publications of the Entomological Society of America 62.Google Scholar
  41. Mackley, J. W., and H. E. Brown. 1987. Efficacy of different-sized pellets of the screwworm (Diptera: Calliphoridae) adult suppression system (SWASS) during the wet and dry seasons in Mexico. Journal of Economic Entomology 80: 629–635.PubMedGoogle Scholar
  42. Mangan, R. L., and D. S. Moreno. 2001. Photoactive dye insecticide formulations: adjuvants increase toxicity to Mexican fruit fly (Diptera: Tephritidae). Journal of Economic Entomology 94: 150–156.PubMedGoogle Scholar
  43. Mathenge, E. M., J. E. Gimnig, M. Kolczak, M. Ombock, L. W. Irungu, and W. A. Hawley. 2001. Effect of permethrin-impregnated nets on exiting behavior, blood feeding success, and time of feeding of malaria mosquitoes (Diptera: Culicidae) in western Kenya. Journal of Medical Entomology 38: 531–536.PubMedGoogle Scholar
  44. Mattingly, P. F. 1957. Notes on the taxonomy and bionomics of certain filariasis vectors. Bulletin of the World Health Organization 16: 686–696.PubMedGoogle Scholar
  45. McPhail, M. 1937. Relation of time of day, temperature and evaporation to attractiveness of fermenting sugar solution to Mexican fruit fly. Journal of Economic Entomology 30: 793–799.Google Scholar
  46. Moreno, D. S., and R. L. Mangan. 1995. Response of the Mexican fruit fly (Diptera: Tephritidae) to two hydrolysed proteins and incorporation of phloxine B to kill adults. Supplement. In J. R. Heitz and K. Downum, (eds.), Light Activated Pest Control. ACS Symposium Series 616. American Chemical Society, Washington, D.C., USA.Google Scholar
  47. Moreno, D. S., and R. L. Mangan. 2002. A bait matrix for reduced-risk insecticides used against fruit flies (Diptera: Tephritidae), pp. 333–362. In G. Hallman and C. P. Schwalbe (eds.), Invasive arthropods in agriculture. Science Publishers Inc., Enfield, NH, USA.Google Scholar
  48. Morlan, H. B., E. M. McCray Jr., and J. W. Kilpatrick. 1962. Field tests with sexually sterile males for control of Aedes aegypti. Mosquito News 22: 295–300.Google Scholar
  49. Musil, R. K. 2002. The modern malaria control handbook. Physicians for Social Responsibility, Washington, D. C., USA.Google Scholar
  50. (NAPPO) North American Plant Protection Organization. 2004. Bilateral program to suppress/eradicate the pink bollworm and boll weevil in the state of Chihuahua, Mexico, pp. 10–11. In NAPPO Newsletter, September 2004. http://www.nappo.org/Newsletter/Newsletters/Sept-04.pdfGoogle Scholar
  51. Noble, L. W. 1969. Fifty years of research on the pink bollworm in the United States. Agriculture Handbook Number 357. USDA/ARS, Washington, DC, USA.Google Scholar
  52. O’Callagahan, M., T. R. Glare, and T. A. Jackson. 2003. Biopesticides to control insect pest incursions in New Zealand, pp. 137–152. In S. L. Goldson and D. M. Suckling (eds.), Defending New Zealand’s green oasis: the role of science in biosecurity. New Zealand Plant Protection Society, Christchurch, New Zealand.Google Scholar
  53. Oladunmade, M. A., W. Takken, L. Dengwat, and I. Ndams. bd1985. Studies on insecticide impregnated targets for the control of riverine Glossina spp. (Diptera: Glossinidae) in the sub-humid savanna zone of Nigeria. Bulletin of Entomological Research 75: 275–281.Google Scholar
  54. Oladunmade, M. A., U. Feldmann, W. Takken, S. O. Tenabe, H. J. Hamann, J. Onah, L. Dengwat, A. M. V. Van der Vloedt, and R. E. Gingrich. 1990. Eradication of Glossina palpalis palpalis (Robineau-Desvoidy) (Diptera: Glossinidae) from agro-pastoral land in central Nigeria by means of the sterile insect technique, pp. 5–23. In Proceedings: Sterile Insect Technique for Tsetse Control and Eradication. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Final Research Co-ordination Meeting, 6–10 June 1988, Vom, Nigeria. STI/PUB/830. IAEA, Vienna, Austria.Google Scholar
  55. Oloo, F. P., P. A. Langley, F. Luyimbazi, and L M. Ogwal. 2000. Integration of the sterile insect technique (SIT) and autosterilisation lethality in the eradication of Glossina fuscipes fuscipes Newst. (Diptera: Glossinidae) in Buvuma Islands in Lake Victoria, Uganda, pp. 311–314. In K. H. Tan (ed.), Proceedings: Area-Wide Control of Fruit Flies and Other Insect Pests. International Conference on Area-Wide Control of Insect Pests, and the 5th International Symposium on Fruit Flies of Economic Importance, 28 May–5 June 1998, Penang, Malaysia. Penerbit Universiti Sains Malaysia, Pulau Pinang, Malaysia.Google Scholar
  56. Pal, R. 1974. WHO/IMCR programme of genetic control of mosquitoes in India, pp. 73–95. In R. R. Pal and M. J. Whitten (eds.), The use of genetics in insect control. Elsevier, Amsterdam, The Netherlands.Google Scholar
  57. Pal, R., and L. E. LaChance. 1974. The operational feasibility of genetic methods for control of insects of medical and veterinary importance. Annual Review of Entomology 19: 269–291.CrossRefPubMedGoogle Scholar
  58. Patterson, R. S., D. E. Weidhaas, H. R. Ford, and C. S. Lofgren. 1970. Suppression and elimination of an island population of Culex pipiens quinquefasciatus with sterile males. Science 168: 1368–1370.PubMedGoogle Scholar
  59. Patterson, R. S., G. C. LaBrecque, and D. F. Williams. 1980. Use of the sterile male technique as an adjunct to insecticidal and physical methods for stable fly control on the island of St. Croix, U.S.V.I., pp. 283–295. In Proceedings, Symposium: Isotope and Radiation Research on Animal Diseases and their Vectors. Food and Agriculture Organization of the United Nations/International Atomic Energy Agency, 7–11 May 1979, Vienna, Austria. STI/PUB/525. IAEA, Vienna, Austria.Google Scholar
  60. Politzar, H., and D. Cuisance. 1984. An integrated campaign against riverine tsetse, Glossina palpalis gambiensis and Glossina tachinoides, by trapping and the release of sterile males. Insect Science and its Application 5: 439–442.Google Scholar
  61. Rao, T. R. 1974. Research on genetic control of mosquitoes in India: review of the work of the WHO/ICMR Research Unit. New Delhi. Journal of Communicable Diseases 6: 57–72.Google Scholar
  62. Ross, R. 1902. Researches on malaria. In Nobel Lectures, Physiology or Medicine 1901–1921. Elsevier, Amsterdam, The Netherlands. http://www.nobel.se/medicine/laureates/1902/ross-lecture.htmlGoogle Scholar
  63. Spencer, J. P., and R. Garcia. 1983. Evaluation of the screwworm adult suppression system. Unpublished report, USDA/APHIS.Google Scholar
  64. Steiner, L. F. 1952. Fruit fly control in Hawaii with poison-bait sprays containing protein hydrolysates. Journal of Economic Entomology 45: 838–843.Google Scholar
  65. Suckling, D. M. 2003. Applying the sterile insect technique for biosecurity: benefits and constraints. New Zealand Plant Protection 56: 21–26. http://www.hortnet.co.nz/publications/nzpps/proceedings/03/03-021.pdfGoogle Scholar
  66. Takken, W., M. A. Oladunmade, L. Dengwat, H. U. Feldmann, J. A. Onah, S. O. Tenabe, and H. J. Hamann. 1986. The eradication of Glossina palpalis palpalis (Robineau-Desvoidy) (Diptera: Glossinidae) using traps, insecticide-impregnated targets and the sterile insect technique in central Nigeria. Bulletin of Entomological Research 76: 275–286.Google Scholar
  67. Tamaki, Y. 1985. Sex pheromone, pp. 145–191. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive insect physiology, biochemistry and pharmacology. Vol. 9. Pergamon Press, New York, NY, USA.Google Scholar
  68. Tannahill, F. H., J. R. Coppedge, L. E. Wendel, D. O. McInnis, and H. D. Petersen. 1982. Evaluation of the screwworm adult suppression system (SWASS) on the Pacific coast of Mexico. The Southwestern Entomologist 7: 244–251.Google Scholar
  69. (USDA/APHIS/IS) United States Department of Agriculture/ Animal and Plant Health Inspection Service/ International Service. 2002. Deteccion y control de la mosca del Mediterraneo 2000–2003. Programma Moscamed. Guatemala-Mexico-Estados Unidos. Compact disc.Google Scholar
  70. Vanderplank, F. L. 1944. Experiments with DDT on various species of tsetse flies in the field and laboratory. Transactions of the Royal Society of Tropical Medicine and Hygiene 40: 603–620.Google Scholar
  71. Vargas, R. I., J. Long, N. W. Miller, K. Delate, C. G. Jackson, G. K. Uchida, R. C. Bautista, and E. J. Harris. 2004. Releases of Psyttalia fletcheri (Hymenoptera: Braconidae) and sterile flies to suppress melon fly (Diptera: Tephritidae) in Hawaii. Journal of Economic Entomology 97: 1531–1539.PubMedGoogle Scholar
  72. Vreysen, M. J. B., K. M. Saleh, I. S. Khamis, and F. Mramba. 1999. An evaluation of insecticide impregnated screens against Glossina austeni (Diptera: Glossinidae) on Unguja Island of Zanzibar. Insect Science and its Application 19: 75–84.Google Scholar
  73. Vreysen, M. J. B., K. M. Saleh, M. Y. Ali, M. A. Abdullah, Z. R. Zhu, K. G. Juma, V. A. Dyck, A. R. Msangi, P. A. Mkonyi, and H. U. Feldmann. 2000.Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja (Zanzibar), using the sterile insect technique. Journal of Economic Entomology 93: 123–135.PubMedGoogle Scholar
  74. Walters, M. L., R. T. Staten, and R. C. Roberson. 2000a. Pink bollworm integrated management using sterile insects under field trial conditions, Imperial Valley, California, pp. 201–206. In K. H. Tan (ed.), Proceedings: Area-Wide Control of Fruit Flies and Other Insect Pests. International Conference on Area-Wide Control of Insect Pests, and the 5th International Symposium on Fruit Flies of Economic Importance, 28 May–5 June 1998, Penang, Malaysia. Penerbit Universiti Sains Malaysia, Pulau Pinang, Malaysia.Google Scholar
  75. Walters, M., R. Sequeira, and R. Staten. 2000b. Pink bollworm population distributions in a large acreage of genetically engineered cotton with regard to resistance management, pp. 1265–1266. National Cotton Council, Memphis, TN, USA.Google Scholar
  76. Whalen, M. 2002. Database of arthropods resistant to pesticides. Michigan State University, Center for Integrated Plant Systems. http://www.pesticideresistance.org/DB/Google Scholar
  77. Weidhaas, D. E., C. H. Schmidt, and E. L. Seabrook. 1962. Field studies on the release of sterile males for the control of Anopheles quadrimaculatus. Mosquito News 22: 283–291.Google Scholar
  78. Williamson, D. L., H. M. Baumgartner, A. G. Mtuya, D. B. Gates, P. E. Cobb, and D. A. Dame. 1983. Integration for insect sterility and insecticides for control of Glossina morsitans morsitans (Diptera: Glossinidae) in Tanzania: II. Methods of sterilization, transportation and release of sterilized males. Bulletin of Entomological Research 73: 267–273.Google Scholar
  79. Wilson, F. D., H. M. Flint, L. A. Bariola, and C. C. Chu. 1991. Reduction in insecticide use associated with cotton resistant to pink bollworm. Crop Science 31: 363–366.Google Scholar
  80. Wilson, F. D., H. M. Flint, W. R. Deaton, D. A. Fischhoff, F. J. Perlak, T. A. Armstrong, R. L. Fuchs, S. A. Berberich, N. J. Parks, and B. R. Stapp. 1992. Resistance of cotton lines containing a Bacillus thuringiensis toxin to pink bollworm (Lepidoptera: Gelechiidae) and other insects. Journal of Economic Entomology 85: 1516–1521.Google Scholar
  81. Wong, T. T. Y., M. M. Ramadan, J. C. Herr, and D. O. McInnis. 1992. Suppression of a Mediterranean fruit fly (Diptera: Tephritidae) population with concurrent parasitoid and sterile fly releases in Kula, Maui, Hawaii. Journal of Economic Entomology 85: 1671–1681.Google Scholar
  82. Yasuno, M., W. W. Macdonald, C. F. Curtis, K. K. Grover, P. K. Rajagopalan, L. S. Sharma, V. P. Sharma, D. Singh, K. R. P. Singh, H. V. Agarwal, S. J. Kazmi, S. J. Menon, P. K. B. Menon, R. K. Razdon, and V. Vaidyanathan. 1976. A release experiment with chemosterilized male Culex pipiens fatigans in a village surrounded by the breeding free zone. Japanese Journal of Sanitation Zoology 29: 325–343.Google Scholar

Copyright information

© US Government. Springer 2005

Authors and Affiliations

  • R. L. Mangan
    • 1
  1. 1.Crop Quality and Fruit Insect ResearchUSDA/ARSWeslacoUSA

Personalised recommendations