Skip to main content
  • 966 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8-5 References

  • Aden, A. and M. Kerker (1951), “Scattering of electromagnetic waves from two concentric spheres”, Journal of Applied Physics, 22 1242–1246

    Article  MATH  MathSciNet  Google Scholar 

  • Ablitt, B.P. et al. (1999), “Imaging and multiple scattering through media containing optically active particles,” Waves in Random Media, 9: 561–572.

    Article  MATH  Google Scholar 

  • Bohren C.F. (1974), “Light scattering by an optically active sphere” Chemical Physics Letters, 29: 458–462.

    Article  Google Scholar 

  • Barron L.D. (1982), Molecular Light Scattering and Optical Activity. Cambridge Univ. Press, UK.

    Google Scholar 

  • Cohen, L. (1989), Proceeding IEEE, 77: 941

    Article  Google Scholar 

  • Chen, D. and L. Tsang (2003), “Microwave emission and scattering of foam based on Monte Carlo simulations of dense media”, IEEE Transaction Geoscience Remote Sensing, 41(4): 782–790.

    Article  Google Scholar 

  • Chen, D. and Y.Q. Jin (2003), “Time-Frequency Analysis of Electromagnetic Pulse Response from a Spherical Target”, Chinese Physics Letters, 20(5): 660–663.

    Article  Google Scholar 

  • Engheta, N. (2002), “An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability”, IEEE Antennas and Wireless Propagation Letters, 1(1): 10–13.

    Article  Google Scholar 

  • Gaunaurd, G., H. Uberall and P. Moser (1981), Journal of Applied Physics, 52: 35.

    Article  Google Scholar 

  • Gaunaurd, G., H. Strifors H, W. Wertman (1991), Journal of Electromagnetic Waves and Applications, 5: 75.

    Google Scholar 

  • Ishimaru, A. and Kuga Y., (1982), “Attenuation constant of a coherent field in a dense distribution of particles”, Journal of the Optical Society of America, 72:1317–1320.

    Google Scholar 

  • Ishimaru, A. et al. (2003), “Generalized constitutive relations for metamaterials based on the quasi-static lorentz theory”, IEEE Transaction on Antennas and Propagation, 51(10): 2550–2557.

    Article  Google Scholar 

  • Jin, Y.Q. (1992), “A Mueller matrix approach to complete polarimetric scattering from a layer of non-uniformly oriented, non-spherical scatters”, Journal of Quantitative Spectroscopy and Radiative Transfer, 48(3): 295–306.

    Article  Google Scholar 

  • Jin, Y.Q. (1994), Electromagnetic Scattering Modeling for Quantitative Remote Sensing, Singapore: World Scientific 32–64.

    Google Scholar 

  • Jin, Y.Q. and M. Chang (2003), “Polarimetric Back-scattering and Shift of Polarization Angle from Random Chiral Spheroids”, Electromagnetics, 23(3): 237–252.

    Google Scholar 

  • Jin, Y.Q., Y. Chen and Z. Wu (2004), “Retrievals and Applications of Remote Sensing Information from Multi-disciplinary Researches”, IEEE GRSS Newsletters, September 2004: 7–11.

    Google Scholar 

  • Koh, G. (1992), “Experimental study of electromagnetic wave propagation in dense random media”, Waves in Random Media, 2:39–48.

    Article  Google Scholar 

  • Kim H. and H. Ling (1993), IEEE Transaction Antennas Propagation 41: 200

    Article  Google Scholar 

  • Kaiser G., A. Friendly (1994), Guide to Wavelets, (New York: Birkhauser)

    MATH  Google Scholar 

  • Koledintseva, M.Y., D.J. Pommerenke, J.L. Drewniak, (2002), “FDTD analysis of printed circuit boards containing wideband Lorentzian dielectric dispersive meida”, IEEE International Symposium on Electromagnetic Compatibility, 2: 830–833.

    Article  Google Scholar 

  • Lakhtakia, A. (1990), “Palarizability dyadics of small chiral ellipsoids”, Chemical Physics Letters, 174(6): 583–586.

    Article  Google Scholar 

  • Lakhtakia, A., V.K. Varadan and V.V. Varadan (1990), “Dilute random distribution of small chiral spheres”, Applied Optics 29(25): 3627–3632.

    Article  Google Scholar 

  • Lindell, I.V., et al. (1994), Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House.

    Google Scholar 

  • Lindell, I.V., A.H. Sihvola et al. (1990), Electromagnetic Waves in Chiral and Bi-Isotropic Media, Boston: Artech House.

    Google Scholar 

  • Lu, C.C. and W.C. Chew (1995), “The application of recursive aggregate T-matrix algorithm in the Monte Carlo simulations of the extinction rate of random distribution of particles”, Radio Science, 30:25–28.

    Article  Google Scholar 

  • Metropolis, N., A.W. Rosenbluth et al. (1953), “Equation of State Calculations by Fast Computing Machines”, Journal of Chemical Physics, 21(6): 1087–1092.

    Article  Google Scholar 

  • Morgan M.A. and K.K. Mei (1979), “Finite-element computation of scattering by inhomogeneous penetrable bodies of revolution”, IEEE Transaction Antennas Propagation, 27(2): 202–214.

    Article  Google Scholar 

  • Moghaddar, A. and E. Walton (1993), IEEE Transaction Antennas Propagation, 41: 677

    Article  Google Scholar 

  • Nishimoto, M. and H. Ikuno (1997), IEICE Transaction Electron. E80-C: 1440

    Google Scholar 

  • Pendry, J.B. and F.J. Garcia (1996), “Computational studies of photonic band gaps in metals”, IEE Colloquium on Semiconductor Optical Microcavity Devices and Photonic Bandgaps (Digest 267): 5/1–5/6.

    Google Scholar 

  • Pendry, J.B. et al (1999), “Magnetism from conductors and enhanced nonlinear phenomena”, IEEE Transaction on Microwave Theory and Techniques, 47(11): 2075–2084.

    Article  Google Scholar 

  • Pendry, J.B. (2000), “Negative refraction makes a perfect lens”, Physical Review Letters, 85: 3966–3969.

    Article  Google Scholar 

  • Rotman, W. (1962), “Plasma simulation by artificial dielectrics and parallel-plate media”, IEEE Transaction on Antennas and Propagation, 10(1): 82–95.

    Article  MathSciNet  Google Scholar 

  • Strifors, H., G. Gaunaurd, B. Brusark and S. Abrahamson (1994), IEEE Transaction Antennas Propagation, 42: 453.

    Article  Google Scholar 

  • Siqueira, P.R. and K. Sarabandi (2000), “T-matrix determination of effective permittivity for three-dimensional dense random media”, IEEE Transaction Antennas Propagation, 48(2): 317–327.

    Article  Google Scholar 

  • Smith, D.R. and W.J. Padilla (2000), “Composite medium with simultaneously negative permeability and permittivity”, Physical Review Letters, 84(18): 4184–4187.

    Article  Google Scholar 

  • Tsang, L., J.A. Kong and R. Shin (1985), Theory of Microwave Remote Sensing, New York: Wiley.

    Google Scholar 

  • Tsang, L., C.E. Mandt and K.H. Ding (1992), “Monte Carlo simulations of extinction rate of dense media with randomly distributed dielectric spheres based on solution of Maxwell’s equations”, Optics Letters, 17:314–316.

    Google Scholar 

  • Tsang, L. and J.A. Kong (2001), Scattering of Electromagnetic Waves: Numerical Simulations, New York: John Wiley.

    Google Scholar 

  • Tsang, L. and J.A. Kong (2001), Scattering of Electromagnetic Waves: Advanced Topics, New York: John Wiley.

    Google Scholar 

  • Ulaby, F.T. and C. Elachi ed. (1990), Radar Polarimetry for Geoscience Applications, Mass: Artech House.

    Google Scholar 

  • Veselago, V.G. (1968), “The electrodynamics of substances with simultaneously negative values of ε and μ”, Soviet Physics USPEKI, 10(4): 509–514.

    Article  Google Scholar 

  • Yang, Q. and Y.Q. Jin (2005), “Numerical Monte Carlo Simulation of Correlated Scattering from Very Densely Random Spherical Particles”, Journal of Applied Physics in press.

    Google Scholar 

  • Yao, H.Y. and L.W. Li (2004), “Performance analysis of metamaterials with two-dimensional isotropy”, Proceedings of Annual Symposium of Singapore-MIT, 58: 19–20.

    Google Scholar 

  • Ye, H. and Y.Q. Jin (2005), “Polarimetric Scattering from a Layer of Random Metamaterial Small Spheroids”, Applied Physics, 31: 3–9.

    MATH  Google Scholar 

  • Zurk, L.M., L. Tsang et al. (1995), “Monte Carlo simulation of the extinction rate of densely packed sphere with clustered and non-clustered geometries”, Journal of the Optical Society of America, 12:1772–1781.

    Article  Google Scholar 

  • Zurk, L.M., L. Tsang and D.P. Winebrenner (1996), “Scattering properties of dense media from Monte Carlo simulations with application to active remote sensing of snow”, Radio Science, 31: 803–819.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

(2006). Electromagnetics of Complex Particulate Media. In: Theory and Approach of Information Retrievals from Electromagnetic Scattering and Remote Sensing. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4030-X_8

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4030-X_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4029-0

  • Online ISBN: 978-1-4020-4030-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics