Skip to main content

Models of the Ocean: Which Ocean?

  • Chapter
Ocean Weather Forecasting

Abstract

Physics actually represented in an ocean model depend on each model’s resolution and its parameterization of subgridscale effects. This chapter is a review of parameterizations used in ocean models, focussing on operational ocean forecasting systems for the North Atlantic and Mediterranean Sea. This review is limited to z-coordinate models. A detailed presentation of the physics underlying each parameterization is out of the scope of this short chapter, but we try to discuss some uncertainties of the physical basis of current parameterizations. The concept of subgrid scale effects and some interesting properties of the diffusion equation are presented first. Because ocean turbulence is strongly anisotropic, parameterization in the vertical and horizontal (or isopycnal) directions differ and are presented separately. Special sections are devoted to bottom boundary layers, flow topography interactions, and the dynamical effects of mesoscale eddies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez, A. and Tintoré, J. (1998). Topographic stress: importance and parameterization. In Ocean Modeling and Parameterization, volume 516 of NATO Science series C, pages 327–350. Kluwer Academic Publishers.

    Google Scholar 

  • Arhan, M., Mercier, H., and Lujtjeharms, J. R. E. (1999). The disparate evolution of three agulhas rings in the south atlantic ocean. J. Geophys. Res., 104:20987–21005.

    Article  Google Scholar 

  • Batchelor, G. K. (1969). Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids., 12,II:233–238.

    Google Scholar 

  • Beckmann, A. and Döscher, R. (1997). A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr., 27:581–591.

    Article  Google Scholar 

  • Blanke, B. and Delecluse, P. (1993). Variability of the tropical atlantic ocean simulated by a general circulation model with two different mixed layer physics. J. Phys. Oceanogr., 23:1363–1388.

    Article  Google Scholar 

  • Bleck, R. and Boudra, D. B. (1981). Initial testing of a numerical circulation model using a hybrid-(quasi-isopycnic) vertical coordinate. J. Phys. Oceanogr., 11:755–770.

    Article  Google Scholar 

  • Boer, G. J. and Denis, B. (1997). Numerical convergence of a gcm. Climate dynamics, 13:359–374.

    Article  Google Scholar 

  • Bower, A. S., Cann, B. Le, Rossby, T., Zenk, W., Gould, J., Speer, K., Richardson, P. L., Prater, M. D., and Zhang, H. M. (2002). Directly-measured mid-depth circulation in the northeastern north atlantic ocean. Nature, 419(6907):603–607.

    Article  Google Scholar 

  • Chanut, J. (2003). Paramétrisation de la restratification après convection profonde en mer du Labrador. PhD thesis, université Joseph Fourier, Grenoble, France.

    Google Scholar 

  • Chanut, J. and Molines, J. M. (2004). Implementation et validation du modèle kpp dans opa8.1. Rapport technique, LEGI, Grenoble.

    Google Scholar 

  • Chassignet, E. and Verron, J., editors (1998). Ocean Modeling and Parameterization, volume 516 of NATO Science series C. Kluwer Academic Publishers, Cambridge.

    Google Scholar 

  • Cox, M. D. (1984). A primitive equation, 3-dimensional model of the ocean. Technical Report 1, Geophysical Fluid Dynamics Laboratory, PO Box 308, Princeton, New Jersey, 08542.

    Google Scholar 

  • Dengg, J., Böning, C, Ernst, U., Redler, R., and Beckmann, A. (1999). Effects of improved model representation of overflow water on the subpolar north atlantic. WOCE Newsletter, 37.

    Google Scholar 

  • Dengler, M., Schott, F., Eden, C, Brandt, P., Fischer, J., and Zantopp, R. J. (2004). New mechanisms for deep water transport. Nature. In press.

    Google Scholar 

  • Dubos, T. and Babiano, A. (2002). Two-dimensional cascades and mixing: a physical space approach. J. Fluid. Mech., 467:81–100.

    Article  Google Scholar 

  • Gent, P. R. and McWilliams, J. C. (1990). Isopycnal mixing in ocean circulation model. J. Phys. Oceanogr., 20:150–155.

    Article  Google Scholar 

  • Gent, P. R., Willebrand, J., McDougall, T. J., and McWilliams, J. C. (1995). Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25:463–474.

    Article  Google Scholar 

  • Gerdes, R. (1993). A primitive equation ocean circulation model using a general vertical coordinate transformation. J. Geophys. Res., 98:14683–14701.

    Article  Google Scholar 

  • Gordon, C, Cooper, C, Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C, Mitchell, J. F. B., and Woods, R. A. (2000). The simulation of sst, sea ice extents and ocean heat transports in a version of the hadley centre coupled model without flux adjustments. Climate Dynamics, 16:147–168.

    Article  Google Scholar 

  • Griffies, S. M. (2004). Fundamentals of ocean climate models. Princeton University Press, Princeton, U.S.A.

    Google Scholar 

  • Griffies, S. M., Boening, C., Bryan, F.O., Chassignet, E. P, Gerdes, R., Hasumi, H., Hirst, A., Treguier, A. M, and Webb, D. (2000a). Developments in ocean climate modelling. Ocean Modelling, 2:123–192.

    Article  Google Scholar 

  • Griffies, S. M., Gnanadesikan, A., Pacanowski, R. C, Larichev, V. D., Dukowicz, J. K., and Smith, R. D. (1998). Isoneutral diffusion in a z-coordinate ocean model. J. Phys. Oceanogr., 28:805–830.

    Article  Google Scholar 

  • Griffies, S. M. and Hallberg, R. W. (2000). Biharmonic friction with a smagorinskylike viscosity for use in large scale eddy-permitting ocean models. Monthly Weather Review, 128:2935–2946.

    Article  Google Scholar 

  • Griffies, S. M., Pacanowski, R. C, and Hallberg, R. W. (2000b). Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Monthly Weather Review, 128:538–564.

    Article  Google Scholar 

  • Haidvogel, D. B. and Beckmann, A. (1999). Numerical Ocean Circulation Modelling, volume 2 of Series on environmental science and management. Imperial College Press, London.

    Google Scholar 

  • Hasumi, H. and Suginohara, N. (1999). Effects of locally enhanced vertical diffusivity over rough bathymetry on the world ocean circulation. J. Geophys. Res., 104:23367–23374.

    Article  Google Scholar 

  • Hurlburt, H. E. and Hogan, P. J. (2000). Impact of 1/8° to 1/64° resolution on gulf stream model-data comparisons in basin-scale subtropical atlantic models. Dyn. Atmos. Oceans, 32:283–329.

    Article  Google Scholar 

  • Jungclaus, J. H. and Mellor, G. (2000). A three-dimensional model study of the mediterranean outflow. J. Mar. Sys., 24:41–66.

    Article  Google Scholar 

  • Klein, P., Hua, B. L., and Carton, X. (2003). Emergence of cyclonic structures due to the interaction between near-inertial oscillations and mesoscale eddies. Q. J. R. Meteorol. Soc., 129:1–20.

    Article  Google Scholar 

  • Klein, P., Hua, B. L., and Lapeyre, G. (2000). Alignment of tracer gradients in two-dimensional turbulence using second order lagrangian dynamics. Physica D, 146:246–260.

    Article  Google Scholar 

  • Klinger, B. A., Marshall, J., and Send, U. (1996). Representation of convective plumes by vertical adjustment. J. Geophys. Res., 101:18175–18182.

    Article  Google Scholar 

  • Kraus, E. B. and Turner, S. (1967). A one-dimensional model of the seasonal thermocline. ii: The general theory and its consequences. Tellus, 19:98–106.

    Article  Google Scholar 

  • Large, W. G. (1998). Modelling and parameterizing the ocean planetary boundary layer. In Ocean Modeling and Parameterization, volume 516 of NATO Science series C, pages 81–120. Kluwer Academic Publishers.

    Google Scholar 

  • Large, W. G., Danabasoglu, G., McWilliams, J.C., Gent, P. R., and Bryan, F. O. (2001). Equatorial circulation of a global ocean climate model with anisotropic horizontal viscosity. J. Phys. Oceanogr., 31:518–536.

    Article  Google Scholar 

  • Large, W. G., McWilliams, J. C, and Doney, S. C. (1994). Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32:363–403.

    Article  Google Scholar 

  • Laurent, L. C. St, Simmons, H. L., and Jayne, S. R. (2002). Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lets, 29:2106.

    Article  Google Scholar 

  • Ledwell, J. R., Watson, A. J., and Law, C. S. (1998). Mixing of a tracer in the pycnocline. J. Geophys. Res., 103:21499–21529.

    Article  Google Scholar 

  • Madec, G., Delecluse, P., Imbard, M., and Levy, C. (1998). Opa 8.1 general circulation model reference manual. Notes de l’ipsl, Univ. Pierre et Marie Curie, Paris.

    Google Scholar 

  • Maltrud, M. E. and McClean, J. L. (2004). An eddy resolving global 1/10° ocean simulation. Ocean Modelling, 7:31–54.

    Google Scholar 

  • Mariotti, A., Legras, B., and Dritschel, D. G. (1994). Vortex stripping and the erosion of coherent structures in two-dimensional flows. Phys. Fluids, 6:3934–3962.

    Article  Google Scholar 

  • Matteoli, O. (2003). Etude de sensibilité d’orca2 à la physique verticale des couches de surface. Rapport de stage, LODYC, Univ. Pierre et Marie Curie, Paris.

    Google Scholar 

  • McWilliams, J. C. and Chow, J. (1981). Equilibrium turbulence i: a reference solution in a β-plane channel. J. Phys. Oceanogr., 11:921–949.

    Article  Google Scholar 

  • Mellor, G. L. and Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. and Space Phys., 20:851–875.

    Google Scholar 

  • Merryfield, W. J., Holloway, G., and Gargett, A. E. (1999). A global ocean model with double-diffusive mixing. J. Phys. Oceanogr., 29:1124–1142.

    Article  Google Scholar 

  • Pacanowski, R. C. and Philander, S. G. H. (1981). Parameterization of vertical mixing in numerical models of the tropical ocean. J. Phys. Oceanogr., 11:1442–1451.

    Article  Google Scholar 

  • Penduff, T., Barnier, B., Verron, J., and Kerbiriou, M. A. (2002). How topographic smoothing contributes to differentiating the eddy flows simulated by sigma-and z-level models. J. Phys. Oceanogr., 32:122–137.

    Article  Google Scholar 

  • Phillips, O. M. (1972). Turbulence in a strongly stratified fluid-is it unstable? Deep Sea Res., 19:79–81.

    Google Scholar 

  • Plumb, R. A. and Mahlman, J. D. (1987). The zonally averaged transport characteristics of the gfdl general circulation/transport model. J. Atmos. Sci., 44:298–327.

    Article  Google Scholar 

  • Price, J. F. and Yang, J. (1998). Marginal sea overflows for climate simulations. In Ocean Modeling and Parameterization, volume 516 of NATO Science series C, pages 155–170. Kluwer Academic Publishers.

    Google Scholar 

  • Rhines, P. B. (1977). The dynamics of unsteady currents, volume 6 of Marine Modelling, The Sea, pages 189–318. Wiley.

    Google Scholar 

  • Riviere, P., Treguier, A. M., and Klein, P. (2004). Effects of bottom friction on nonlinear equilibration of an oceanic baroclinic jet. J. Phys. Oceanogr., 34:416–432.

    Article  Google Scholar 

  • Roberts, M. and Marshall, D. (1998). Do we require adiabatic dissipation schemes in eddy-resolving ocean models? J. Phys. Oceanogr., 28:2050–2063.

    Article  Google Scholar 

  • Ruddick, B. R., McDougall, T. J., and Turner, J. S. (1989). The formation of layers in a uniformly stirred density gradient. Deep Sea Res., 36:597–609.

    Article  Google Scholar 

  • Schmitt, R. W. (1998). Double-diffusive convection. In Ocean Modeling and Parameterization, volume 516 of NATO Science series C, pages 215–234. Kluwer Academic Publishers.

    Google Scholar 

  • Send, U. and Käse, R. H. (1998). Parameterization of processes in deep convection regimes. In Ocean Modeling and Parameterization, volume 516 of NATO Science series C, pages 191–214. Kluwer Academic Publishers.

    Google Scholar 

  • Shchepetkin, A. F. and McWilliams, J. C. (1998). Quasi-monotone advection schemes based on explicit locally adaptative dissipation. Monthly Weather Review, 126:1541–1580.

    Article  Google Scholar 

  • Siegel, A., Weiss, J. B., Toomre, J., McWilliams, J. C, Berloff, P. S., and Yavneh, I. (2001). Eddies and vortices in ocean basin dynamics. Geophys. Res. Lets., 28:3183–3186.

    Article  Google Scholar 

  • Simmons, H. L., Jayne, S. R., Laurent, L. C. St., and Weaver, A. J. (2004). Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modelling, 6:245–263.

    Article  Google Scholar 

  • Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I. the basic experiment. Monthly Weather Review, 91:99–164.

    Google Scholar 

  • Smith, R. D., Maltrud, M. E., Bryan, F. O., and Hecht, M.W. (2000). Simulation of the north atlantic ocean at 1/10°. J. Phys. Oceanogr., 30:1532–1561.

    Article  Google Scholar 

  • Smith, R. D. and McWilliams, J. C. (2003). Anisotropic horizontal viscosity for ocean models. Ocean Modelling, 5:129–156.

    Article  Google Scholar 

  • Speer, K., Guilyardi, E., and Madec, G. (2000). Southern ocean transformation in a coupled model with and without eddy mass fluxes. Tellus, 52A:554–565.

    Google Scholar 

  • Stratford, K. and Haines, K (2000). Frictional sinking of the dense water overflow in a z-coordinate ogcm of the mediterranean sea. Geophys. Res. Lets., 27:3973–3976.

    Article  Google Scholar 

  • Toole, J. M. (1998). Turbulent mixing in the ocean. In Ocean Modeling and Parameterization, volume 516 of NATO Science series C, pages 171–190. Kluwer Academic Publishers.

    Google Scholar 

  • Treguier, A. M., Barnier, B., de Miranda, A. P., Molines, J. M., Grima, N., Imbard, M., Messager, C, Reynaud, T, and Michel, S (2001). An eddy permitting model of the atlantic circulation: evaluating open boundary conditions. J. Geophys. Res., 106:22115–22129.

    Article  Google Scholar 

  • Treguier, A. M., Held, I., and Larichev, V. (1997). On the parameterization of quasi-geostrophic eddies in primitive equation ocean models. J. Phys. Oceanogr., 27:567–580.

    Article  Google Scholar 

  • Treguier, A. M., Hogg, N. G., Maltrud, M., Speer, K., and Thierry, V. (2003). Origin of deep zonal flows in the brazil basin. J. Phys. Oceanogr., 33:580–599.

    Article  Google Scholar 

  • Visbeck, M., Marshall, J., Haine, T., and Spall, M. (1997). Specification of eddy transfer coefficients in coarse resolution ocean circulation models. J. Phys. Oceanogr., 27:381–402.

    Article  Google Scholar 

  • Willebrand, J., Barnier, B., Boning, C., Dieterich, C., Hermann, P., Killworth, P. D., LeProvost, C., Jia, Y., Molines, J. M., and New, A. L. (2001). Circulation characteristics in three eddy-permitting models of the north atlantic. Prog. Oceanogr., 48:123–161.

    Article  Google Scholar 

  • Young, W. R., Rhines, P. B., and Garrett, C. J. R. (1982). Shear-flow dispersion, internal waves and horizontal mixing in the ocean. J. Phys. Oceanogr., 12:515–527.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Treguier, A.M. (2006). Models of the Ocean: Which Ocean?. In: Chassignet, E.P., Verron, J. (eds) Ocean Weather Forecasting. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4028-8_3

Download citation

Publish with us

Policies and ethics