Skip to main content

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 8))

  • 708 Accesses

Abstract

This chapter provides an overview on the role of cell motility of melanoma progression. Mechanistically, several molecules are known to be involved in deregulation of adhesive interaction of tumor cells with each other and with extracellular matrices, in synthesis and activation of proteases and other enzymes, and in locomotion of tumor cells and organization of the cytoskeleton. Examples for these gene families and their role in melanoma motility are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Saeki Y, Hazeki K, Matsumoto M, Toyoshima K, Akedo H, Seya T. Correlation between metastatic potency and the down-regulation of E-cadherin in the mouse hepatoma cell lines G-1 and G-5. Oncol. Rep. 2000, 7: 731–735.

    PubMed  CAS  Google Scholar 

  2. Mialhe A, Levacher G, Champelovier P, Martel V, Serres M, Knudsen K, Seigneurin D. Expression of E-, P-, n-cadherins and catenins in human bladder carcinoma cell lines. J. Urol. 2000, 164: 826–835.

    PubMed  CAS  Google Scholar 

  3. Poser I, Dominguez D, de Herreros AG, Varnai A, Buettner R, Bosserhoff AK. Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. J. Biol. Chem. 2001, 276: 24661–24666.

    PubMed  CAS  Google Scholar 

  4. Luo J, Lubaroff DM, Hendrix MJ. Suppression of prostate cancer invasive potential and matrix metalloproteinase activity by E-cadherin transfection. Cancer Res. 1999, 59: 3552–3556.

    PubMed  CAS  Google Scholar 

  5. Hsu MY, Meier FE, Nesbit M, Hsu JY, Van Belle P, Elder DE, Herlyn M. E-cadherin expression in melanoma cells restores keratinocyte-mediated growth control and down-regulates expression of invasion-related adhesion receptors. Am. J. Pathol. 2000, 156: 1515–1525.

    PubMed  CAS  Google Scholar 

  6. Qian X, Karpova T, Sheppard AM, McNally J, Lowy DR. E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J. 2004, 23: 1739–1784.

    PubMed  CAS  Google Scholar 

  7. Yoshimura M, Ihara Y, Matsuzawa Y, Taniguchi N. Aberrant glycosylation of E-cadherin enhances cell-cell binding to suppress metastasis. J. Biol. Chem. 1996, 271: 13811–13815.

    PubMed  CAS  Google Scholar 

  8. Li G, Satyamoorthy K, Herlyn M. N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res. 2001, 61: 3819–3825.

    PubMed  CAS  Google Scholar 

  9. Okada T, Hawley RG, Kodaka M, Okuno H. Significance of VLA-4-VCAM-1 interaction and CD44 for transendothelial invasion in a bone marrow metastatic myeloma model. Clin. Exp. Metastasis 1999, 17: 623–629.

    PubMed  CAS  Google Scholar 

  10. Sun JJ, Zhou XD, Liu YK, Tang ZY, Feng JX, Zhou G, Xue Q, Chen J. Invasion and metastasis of liver cancer: expression of intercellular adhesion molecule 1. J. Cancer Res. Clin. Oncol. 1999, 125: 28–34.

    PubMed  CAS  Google Scholar 

  11. Umansky V, Schirrmacher V, Rocha M. New insights into tumor-host interactions in lymphoma metastasis. J. Mol. Med. 1996, 74: 353–363.

    PubMed  CAS  Google Scholar 

  12. Koyama S, Ebihara T, Fukao K. Expression of intercellular adhesion molecule 1 (ICAM-1) during the development of invasion and/or metastasis of gastric carcinoma. J. Cancer Res. Clin. Oncol. 1992, 118: 609–614.

    PubMed  CAS  Google Scholar 

  13. Lehmann JM, Riethmuller G, Johnson JP. MUC18, a marker of tumor progression in human melanoma, shows sequence similarity to the neural cell adhesion molecules of the immunoglobulin superfamily. Proc. Natl. Acad. Sci. USA 1989, 86: 9891–9895.

    PubMed  CAS  Google Scholar 

  14. Slattery MJ, Dong C. Neutrophils influence melanoma adhesion and migration under flow conditions. Int. J. Cancer 2003, 106: 713–722.

    PubMed  CAS  Google Scholar 

  15. Fogel M, Mechtersheimer S, Huszar M, Smirnov A, Abu-Dahi A, Tilgen W, Reichrath J, Georg T, Altevogt P, Gutwein P. L1 adhesion molecule (CD 171) in development and progression of human malignant melanoma. Cancer Lett. 2003, 189: 237–247.

    PubMed  CAS  Google Scholar 

  16. Camby I, Belot N, Rorive S, Lefranc F, Maurage CA, Lahm H, Kaltner H, Hadari Y, Ruchoux MM, Brotchi J, Zick Y, Salmon I, Gabius HJ, Kiss R. Galectins are differentially expressed in supratentorial pilocytic astrocytomas, astrocytomas, anaplastic astrocytomas and glioblastomas, and significantly modulate tumor astrocyte migration. Brain Pathol. 2001, 11: 12–26.

    PubMed  CAS  Google Scholar 

  17. Kawachi K, Matsushita Y, Yonezawa S, Nakano S, Shirao K, Natsugoe S, Sueyoshi K, Aikou T, Sato E. Galectin-3 expression in various thyroid neoplasms and its possible role in metastasis formation. Hum. Pathol. 2000, 31: 428–433.

    PubMed  CAS  Google Scholar 

  18. Nakamura M, Inufusa H, Adachi T, Aga M, Kurimoto M, Nakatani Y, Wakano T, Nakajima A, Hida JI, Miyake M, Shindo K, Yasutomi M. Involvement of galectin-3 expression in colorectal cancer progression and metastasis. Int. J. Oncol. 1999, 15: 143–148.

    PubMed  CAS  Google Scholar 

  19. van den Brule FA, Buicu C, Baldet M, Sobel ME, Cooper DN, Marschal P, Castronovo V. Galectin-1 modulates human melanoma cell adhesion to laminin. Biochem. Biophys. Res. Commun. 1995, 209: 760–767.

    PubMed  Google Scholar 

  20. Matarresea P, Tinari N, Semeraroa ML, Natolib C, Iacobelli S, Malorni W. Galectin-3 overexpression protects from cell damage and death by influencing mitochondrial homeostasis. FEBS Lett. 2000, 473: 311–315.

    Google Scholar 

  21. Matarrese P, Fusco O, Tinari N, Natoli C, Liu FT, Semeraro ML, Malorni W, Iacobelli S. Galectin-3 overexpression protects from apoptosis by improving cell adhesion properties. Int. J. Cancer 2000, 85: 545–554.

    PubMed  CAS  Google Scholar 

  22. Iurisci I, Tinari N, Natoli C, Angelucci D, Cianchetti E, Iacobelli S. Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clin. Cancer Res. 2000, 6: 1389–1393.

    PubMed  CAS  Google Scholar 

  23. Kageshita T, Kashio Y, Yamauchi A, Seki M, Abedin MJ, Nishi N, Shoji H, Nakamura T, Ono T, Hirashima M. Possible role of galectin-9 in cell aggregation and apoptosis of human melanoma cell lines and its clinical significance. Int. J. Cancer 2002, 99: 809–816.

    PubMed  CAS  Google Scholar 

  24. Kuryu M, Ozaki T, Nishida K, Shibahara M, Kawai A, Inoue H. Expression of CD44 variants in osteosarcoma. J. Cancer Res. Clin. Oncol. 1999, 125: 646–652.

    PubMed  CAS  Google Scholar 

  25. Ladeda V, Aguirre GJ, Bald KJ. Function and expression of CD44 during spreading, migration, and invasion of murine carcinoma cells. Exp. Cell Res. 1998, 242: 515–527.

    PubMed  CAS  Google Scholar 

  26. Okamoto I, Kawano Y, Tsuiki H, Sasaki J, Nakao M, Matsumoto M, Suga M, Ando M, Nakajima M, Saya H. CD44 cleavage induced by a membrane-associated metalloprotease plays a critical role in tumor cell migration. Oncogene 1999, 18: 1435–1446.

    PubMed  CAS  Google Scholar 

  27. Dome B, Somlai B, Ladanyi A, Fazekas K, Zoller M, Timar J. Expression of CD44v3 splice variant is associated with the visceral metastatic phenotype of human melanoma. Virchows Arch. 2001, 439: 628–635.

    PubMed  CAS  Google Scholar 

  28. Ranuncolo SM, Ladeda V, Gorostidy S, Morandi A, Varela M, Lastiri J, Loria D, Del Aguila R, Joffe EB, Pallotta G, Puricelli L. Expression of CD44s and CD44 splice variants in human melanoma. Oncol. Rep. 2002, 9: 51–56.

    PubMed  Google Scholar 

  29. Seiter S, Schadendorf D, Herrmann K, Schneider M, Rosel M, Arch R, Tilgen W, Zoller M. Expression of CD44 variant isoforms in malignant melanoma. Clin. Cancer Res. 1996, 2: 447–456.

    PubMed  CAS  Google Scholar 

  30. Yoshinari C, Mizusawa N, Byers HR, Akasaka T. CD44 variant isoform CD44v10 expression of human melanoma cell lines is upregulated by hyaluronate and correlates with migration. Melanoma Res. 1999, 9: 223–231.

    PubMed  CAS  Google Scholar 

  31. Iwamoto Y, Nomizu M, Yamada Y, Ito Y, Tanaka K, Sugioka Y. Inhibition of angiogenesis, tumour growth and experimental metastasis of human fibrosarcoma cells HT1080 by a multimeric form of the laminin sequence Tyr-Ile-Gly-Ser-Arg (YIGSR). Br. J. Cancer 1996, 73: 589–595.

    PubMed  CAS  Google Scholar 

  32. Graf J, Iwamoto Y, Sasaki M, Martín GR, Kleinman HK, Robey FA, Yamada Y. Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis, and receptor binding. Cell 1987, 48: 989–996.

    PubMed  CAS  Google Scholar 

  33. Givant-Horwitz V, Davidson B, Reich R. Laminin-induced signaling in tumor cells: the role of the M(r) 67,000 laminin receptor. Cancer Res. 2004, 64: 3572–3579.

    PubMed  CAS  Google Scholar 

  34. Ito H, Miyazaki M, Nishimura F, Nakajima N. Secretion of extracellular matrix (fibronectin), growth factor (transforming growth factor beta) and protease (cathepsin D) by hepatoma cells. Oncology 2000, 58: 261–270.

    PubMed  CAS  Google Scholar 

  35. Ryu S, Jimi S, Eura Y, Kato T, Takebayashi S. Strong intracellular and negative peripheral expression of fibronectin in tumor cells contribute to invasion and metastasis in papillary thyroid carcinoma. Cancer Lett. 1999, 146: 103–109.

    PubMed  CAS  Google Scholar 

  36. Urtreger AJ, Aguirre GJ, Werbajh SE, Puricelli LI, Muro AF, Bald KJ. Involvement of fibronectin in the regulation of urokinase production and binding in murine mammary tumor cells. Int. J. Cancer 1999, 82: 748–753.

    PubMed  CAS  Google Scholar 

  37. Shimao Y, Nabeshima K, Inoue T, Koono M. Role of fibroblasts in HGF/SF-induced cohort migration of human colorectal carcinoma cells: fibroblasts stimulate migration associated with increased fibronectin production via upregulated TGF-beta 1. Int. J. Cancer 1999, 82: 449–458.

    PubMed  CAS  Google Scholar 

  38. Hunt G, Sherbet GV. Effects of laminin on the attachment of glioma cells to type IV collagen. Clin. Exp. Metastasis 1989, 7: 353–359.

    PubMed  CAS  Google Scholar 

  39. Kleiner DE, Stetler-Stevenson WG. Matrix metalloproteinases and metastasis. Cancer Chemother. Pharmacol. 1999, 43 Suppl:S42–51: S42–S51.

    PubMed  CAS  Google Scholar 

  40. Tsuji T, Kawada Y, Kai-Murozono M, Komatsu S, Han SA, Takeuchi K, Mizushima H, Miyazaki K, Irimura T. Regulation of melanoma cell migration and invasion by laminin-5 and alpha3beta1 integrin (VLA-3). Clin. Exp. Metastasis 19: 127–134.

    Google Scholar 

  41. Cohen IR, Murdoch AD, Naso MF, Marchetti D, Berd D, Iozzo RV. Abnormal expression of perlecan proteoglycan in metastatic melanomas. Cancer Res. 1994, 54: 5771–5774.

    PubMed  CAS  Google Scholar 

  42. Vuillermoz B, Khoruzhenko A, D’Onofrio MF, Ramont L, Venteo L, Perreau C, Antonicelli F, Maquart FX, Wegrowski Y. The small leucine-rich proteoglycan lumican inhibits melanoma progression. Exp. Cell Res. 2004, 296: 294–306.

    PubMed  CAS  Google Scholar 

  43. Helige C, Zellnig G, Hofmann-Wellenhof R, Fink-Puches R, Smolle J, Tritthart HA. Interrelation of motility, cytoskeletal organization and gap junctional communication with invasiveness of melanocytic cells in vitro. Invasion Metastasis 1997, 17: 26–41.

    PubMed  CAS  Google Scholar 

  44. Kirschmann DA, Seftor EA, Nieva DR, Mariano EA, Hendrix MJ. Differentially expressed genes associated with the metastatic phenotype in breast cancer. Breast Cancer Res. Treat. 1999, 55: 127–136.

    PubMed  CAS  Google Scholar 

  45. Shinohara M, Hiraki A, Ikebe T, Nakamura S, Kurahara S, Shirasuna K, Garrod DR. Immunohistochemical study of desmosomes in oral squamous cell carcinoma: correlation with cytokeratin and E-cadherin staining, and with tumour behaviour. J. Pathol. 1998, 184: 369–381.

    PubMed  CAS  Google Scholar 

  46. Nakayama S, Sasaki A, Mese H, Alcalde RE, Matsumura T. Establishment of high and low metastasis cell lines derived from a human tongue squamous cell carcinoma. Invasion Metastasis 1998, 18: 219–228.

    PubMed  Google Scholar 

  47. Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix MJ, Wu R, Wu CW. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am. J. Respir. Cell Mol. Biol. 1997, 17: 353–360.

    PubMed  CAS  Google Scholar 

  48. Hembrough TA, Kralovich KR, Li L, Gonias SL. Cytokeratin 8 released by breast carcinoma cells in vitro binds plasminogen and tissue-type plasminogen activator and promotes plasminogen activation. Biochem. J. 1996, 317: 763–769.

    PubMed  CAS  Google Scholar 

  49. Hendrix MJ, Seftor EA, Seftor RE, Trevor KT. Experimental co-expression of vimentin and keratin intermediate filaments in human breast cancer cells results in phenotypic interconversion and increased invasive behavior. Am. J. Pathol. 1997, 150: 483–495.

    PubMed  CAS  Google Scholar 

  50. Hendrix MJ, Seftor EA, Chu YW, Trevor KT, Seftor RE. Role of intermediate filaments in migration, invasion and metastasis. Cancer Metastasis Rev. 1996, 15: 507–525.

    PubMed  CAS  Google Scholar 

  51. Michiels F, Collard JG. Rho-like GTPases: their role in cell adhesion and invasion. Biochem. Soc. Symp. 1999, 65:125–46.

    PubMed  CAS  Google Scholar 

  52. Evers EE, van der Kammen RA, ten Klooster JP, Collard JG. Rho-like GTPases in tumor cell invasion. Methods Enzymol. 2000, 325: 403–415.

    PubMed  CAS  Google Scholar 

  53. Evers EE, Zondag GC, Malliri A, Price LS, ten Klooster JP, van der Kammen RA, Collard JG. Rho family proteins in cell adhesion and cell migration. Eur. J. Cancer 36: 1269–1274.

    Google Scholar 

  54. Clark EA, Golub TR, Lander ES, Hynes RO. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 2000, 406: 532–535.

    PubMed  CAS  Google Scholar 

  55. Collisson EA, Kleer C, Wu M, De A, Gambhir SS, Merajver SD, Kolodney MS. Atorvastatin prevents RhoC isoprenylation, invasion, and metastasis in human melanoma cells. Mol. Cancer Ther. 2003, 2: 941–948.

    PubMed  CAS  Google Scholar 

  56. Suyama E, Kawasaki H, Kasaoka T, Taira K. Identification of genes responsible for cell migration by a library of randomized ribozymes. Cancer Res. 2003, 63: 119–124.

    PubMed  CAS  Google Scholar 

  57. Itoh K, Yoshioka K, Akedo H, Uehata M, Ishizaki T, Narumiya S. An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nat. Med. 1999, 5: 221–225.

    PubMed  CAS  Google Scholar 

  58. Nakajima M, Hayashi K, Egi Y, Katayama K, Amano Y, Uehata M, Ohtsuki M, Fujii A, Oshita K, Kataoka H, Chiba K, Goto N, Kondo T. Effect of Wf-536, a novel ROCK inhibitor, against metastasis of B16 melanoma. Cancer Chemother. Pharmacol. 2003, 52: 319–324.

    PubMed  CAS  Google Scholar 

  59. Ueda M, Ueki M, Terai Y, Ueki K, Kumagai K, Fujii H, Yoshizawa K, Nakajima M. Biological implications of growth factors on the mechanism of invasion in gynecological tumor cells. Gynecol. Obstet. Invest. 1999, 48: 221–228.

    PubMed  CAS  Google Scholar 

  60. Ueda M, Fujii H, Yoshizawa K, Terai Y, Kumagai K, Ueki K, Ueki M. Effects of EGF and TGF-alpha on invasion and proteinase expression of uterine cervical adenocarcinoma OMC-4 cells. Invasion Metastasis 1998, 18: 176–183.

    PubMed  CAS  Google Scholar 

  61. Rooprai HK, Rucklidge GJ, Panou C, Pilkington GJ. The effects of exogenous growth factors on matrix metalloproteinase secretion by human brain tumour cells. Br. J. Cancer 2000, 82: 52–55.

    PubMed  CAS  Google Scholar 

  62. Price JT, Tiganis T, Agarwal A, Djakiew D, Thompson EW. Epidermal growth factor promotes MDA-MB-231 breast cancer cell migration through a phosphatidylinositol 3-kinase and phospholipase C-dependent mechanism. Cancer Res. 1999, 59: 5475–5478.

    PubMed  CAS  Google Scholar 

  63. Jiang W, Hiscox S, Matsumoto K, Nakamura T. Hepatocyte growth factor/scatter factor, its molecular, cellular and clinical implications in cancer. Crit. Rev. Oncol. Hematol. 1999, 29: 209–248.

    PubMed  CAS  Google Scholar 

  64. Trusolino L, Cavassa S, Angelini P, Ando M, Bertotti A, Comoglio PM, Boccaccio C. HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity. FASEB J. 2000, 14: 1629–1640.

    PubMed  CAS  Google Scholar 

  65. Rosenthal EL, Johnson TM, Allen ED, Apel IJ, Punturieri A, Weiss SJ. Role of the plasminogen activator and matrix metalloproteinase systems in epidermal growth factor-and scatter factor-stimulated invasion of carcinoma cells. Cancer Res. 1998, 58: 5221–5230.

    PubMed  CAS  Google Scholar 

  66. Hiscox S, Jiang WG. Association of the HGF/SF receptor, c-met, with the cell-surface adhesion molecule, E-cadherin, and catenins in human tumor cells. Biochem. Biophys. Res. Commun. 1999, 261: 406–411.

    PubMed  CAS  Google Scholar 

  67. Taipale J, Saharinen J, Keski-Oja J. Extracellular matrix-associated transforming growth factor-beta: role in cancer cell growth and invasion. Adv. Cancer Res. 1998, 75:87–134: 87–134.

    PubMed  CAS  Google Scholar 

  68. Naylor S, Smalley MJ, Robertson D, Gusterson BA, Edwards PA, Dale TC. Retroviral expression of Wnt-1 and Wnt-7b produces different effects in mouse mammary epithelium. J. Cell Sci. 2000, 113: 2129–2138.

    PubMed  CAS  Google Scholar 

  69. Vider BZ, Zimber A, Chastre E, Prevot S, Gespach C, Estlein D, Wolloch Y, Tronick SR, Gazit A, Yaniv A. Evidence for the involvement of the Wnt 2 gene in human colorectal cancer. Oncogene 1996, 12: 153–158.

    PubMed  CAS  Google Scholar 

  70. Iozzo RV, Eichstetter I, Danielson KG. Aberrant expression of the growth factor Wnt-5A in human malignancy. Cancer Res. 1995, 55: 3495–3499.

    PubMed  CAS  Google Scholar 

  71. Lejeune S, Huguet EL, Hamby A, Poulsom R, Harris AL. Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clin. Cancer Res. 1995, 1: 215–222.

    PubMed  CAS  Google Scholar 

  72. Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M, Trent JM. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 2002, 1: 279–288.

    PubMed  CAS  Google Scholar 

  73. Neudauer CL, McCarthy JB. Insulin-like growth factor I-stimulated melanoma cell migration requires phosphoinositide 3-kinase but not extracellular-regulated kinase activation. Exp. Cell Res. 2003, 286: 128–137.

    PubMed  CAS  Google Scholar 

  74. Nozaki S, Sledge GWJ, Nakshatri H. Cancer cell-derived interleukin 1alpha contributes to autocrine and paracrine induction of pro-metastatic genes in breast cancer. Biochem. Biophys. Res. Commun. 2000, 275: 60–62.

    PubMed  CAS  Google Scholar 

  75. Yasuda T, Matsui H, Kanamori M, Yudoh K, Ohmori K, Aoki M, Tsuji H. Effects of tumor cell-derived interleukin 1 alpha on invasiveness of metastatic clones of murine RCT sarcoma through endothelial cells. Tumour Biol. 1999, 20: 105–116.

    PubMed  CAS  Google Scholar 

  76. Dekker SK, Vink J, Vermeer BJ, Bruijn JA, Mihm MC, Jr., Byers HR. Differential effects of interleukin 1-alpha (IL-1 alpha) or tumor necrosis factor-alpha (TNF-alpha) on motility of human melanoma cell lines on fibronectin. J. Invest. Dermatol. 1994, 102: 898–905.

    PubMed  CAS  Google Scholar 

  77. Bar-Eli M. Role of interleukin-8 in tumor growth and metastasis of human melanoma. Pathobiology 1999, 67: 12–18.

    PubMed  CAS  Google Scholar 

  78. Inoue K, Slaton JW, Eve BY, Kim SJ, Perrotte P, Balbay MD, Yano S, Bar-Eli M, Radinsky R, Pettaway CA, Dinney CP. Interleukin 8 expression regulates tumorigenicity and metastases in androgen-independent prostate cancer. Clin. Cancer Res. 2000, 6: 2104–2119.

    PubMed  CAS  Google Scholar 

  79. Youngs SJ, Ali SA, Taub DD, Rees RC. Chemokines induce migrational responses in human breast carcinoma cell lines. Int. J. Cancer 1997, 71: 257–266.

    PubMed  CAS  Google Scholar 

  80. Luca M, Huang S, Gershenwald JE, Singh RK, Reich R, Bar-Eli M. Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. Am. J. Pathol. 1997, 151: 1105–1113.

    PubMed  CAS  Google Scholar 

  81. Huang S, Mills L, Mian B, Tellez C, McCarty M, Yang XD, Gudas JM, Bar-Eli M. Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am. J. Pathol. 2002, 161: 125–134.

    PubMed  CAS  Google Scholar 

  82. Nishino H, Miyata M, Kitamura K. The effect of interleukin-6 on enhancing the invasiveness of head and neck cancer cells in vitro. Eur. Arch. Otorhinolaryngol. 1998, 255: 468–472.

    PubMed  CAS  Google Scholar 

  83. Obata NH, Tamakoshi K, Shibata K, Kikkawa F, Tomoda Y. Effects of interleukin-6 on in vitro cell attachment, migration and invasion of human ovarian carcinoma. Anticancer. Res. 1997, 17: 337–342.

    PubMed  CAS  Google Scholar 

  84. Kossakowska AE, Edwards DR, Prusinkiewicz C, Zhang MC, Guo D, Urbanski SJ, Grogan T, Marquez LA, Janowska-Wieczorek A. Interleukin-6 regulation of matrix metalloproteinase (MMP-2 and MMP-9) and tissue inhibitor of metalloproteinase (TIMP-1) expression in malignant non-Hodgkin’s lymphomas. Blood 1999, 94: 2080–2089.

    PubMed  CAS  Google Scholar 

  85. Wagner S, Stegen C, Bouterfa H, Huettner C, Kerkau S, Roggendorf W, Roosen K, Tonn JC. Expression of matrix metalloproteinases in human glioma cell lines in the presence of IL-10. J. Neurooncol. 1998, 40: 113–122.

    PubMed  CAS  Google Scholar 

  86. Wu W, Yamaura T, Murakami K, Ogasawara M, Hayashi K, Murata J, Saiki I. Involvement of TNF-alpha in enhancement of invasion and metastasis of colon 26-L5 carcinoma cells in mice by social isolation stress. Oncol. Res. 1999, 11: 461–469.

    PubMed  CAS  Google Scholar 

  87. Esteve PO, Tremblay P, Houde M, St-Pierre Y, Mandeville R. In vitro expression of MMP-2 and MMP-9 in glioma cells following exposure to inflammatory mediators. Biochim. Biophys. Acta. 1998, 1403: 85–96.

    PubMed  CAS  Google Scholar 

  88. Zhu N, Lalla R, Eves P, Brown TL, King A, Kemp EH, Haycock JW, MacNeil S. Melanoma cell migration is upregulated by tumour necrosis factor-alpha and suppressed by alpha-melanocyte-stimulating hormone. Br. J. Cancer 2004, 90: 1457–1463.

    PubMed  CAS  Google Scholar 

  89. Waterston AM, Salway F, Andreakos E, Butler DM, Feldmann M, Coombes RC. TNF autovaccination induces self anti-TNF antibodies and inhibits metastasis in a murine melanoma model. Br. J. Cancer 2004, 90: 1279–1284.

    PubMed  CAS  Google Scholar 

  90. Robledo MM, Bartolome RA, Longo N, Rodriguez-Frade JM, Mellado M, Longo I, Van Muijen GN, Sanchez-Mateos P, Teixido J. Expression of functional chemokine receptors CXCR3 and CXCR4 on human melanoma cells. J. Biol. Chem. 2001, 276:45098–45105.

    PubMed  CAS  Google Scholar 

  91. Bartolome RA, Galvez BG, Longo N, Baleux F, Van Muijen GN, Sanchez-Mateos P, Arroyo AG, Teixido J. Stromal cell-derived factor-1alpha promotes melanoma cell invasion across basement membranes involving stimulation of membrane-type 1 matrix metalloproteinase and Rho GTPase activities. Cancer Res. 2004, 64: 2534–2543.

    PubMed  CAS  Google Scholar 

  92. Bartenjev I, Rudolf Z, Stabuc B, Vrhovec I, Perkovic T, Kansky A. Cathepsin D expression in early cutaneous malignant melanoma. Int. J. Dermatol. 2000, 39: 599–602.

    PubMed  CAS  Google Scholar 

  93. Frohlich E, Schlagenhauff B, Mohrle M, Weber E, Klessen C, Rassner G. Activity, expression, and transcription rate of the cathepsins B, D, H, and L in cutaneous malignant melanoma. Cancer 2001, 91: 972–982.

    PubMed  CAS  Google Scholar 

  94. Kozlowski L, Wojtukiewicz MZ, Ostrowska H. Cathepsin A activity in primary and metastatic human melanocytic tumors. Arch. Dermatol. Res. 2000, 292: 68–71.

    PubMed  CAS  Google Scholar 

  95. Mai J, Waisman DM, Sloane BF. Cell surface complex of cathepsin B/annexin II tetramer in malignant progression. Biochim. Biophys. Acta. 2000, 1477: 215–230.

    PubMed  CAS  Google Scholar 

  96. Frade R, Rodrigues-Lima F, Huang S, Xie K, Guillaume N, Bar-Eli M. Procathepsin-L, a proteinase that cleaves human C3 (the third component of complement), confers high tumorigenic and metastatic properties to human melanoma cells. Cancer Res. 1998, 58: 2733–2736.

    PubMed  CAS  Google Scholar 

  97. Rousselet N, Mills L, Jean D, Tellez C, Bar-Eli M, Frade R. Inhibition of tumorigenicity and metastasis of human melanoma cells by anti-cathepsin L single chain variable fragment. Cancer Res. 2004, 64: 146–151.

    PubMed  CAS  Google Scholar 

  98. Dennhofer R, Kurschat P, Zigrino P, Klose A, Bosserhoff A, van Muijen G, Krieg T, Mauch C, Hunzelmann N. Invasion of melanoma cells into dermal connective tissue in vitro: evidence for an important role of cysteine proteases. Int. J. Cancer 2003, 106: 316–323.

    PubMed  Google Scholar 

  99. Fujii H, Nakajima M, Saiki I, Yoneda J, Azuma I, Tsuruo T. Human melanoma invasion and metastasis enhancement by high expression of aminopeptidase N/CD13. Clin. Exp. Metastasis 1995, 13: 337–344.

    PubMed  CAS  Google Scholar 

  100. Saiki I, Fujii H, Yoneda J, Abe F, Nakajima M, Tsuruo T, Azuma I. Role of aminopeptidase N (CD13) in tumor-cell invasion and extracellular matrix degradation. Int. J. Cancer 1993, 54: 137–143.

    PubMed  CAS  Google Scholar 

  101. Kido A, Krueger S, Haeckel C, Roessner A. Possible contribution of aminopeptidase N (APN/CD13) to invasive potential enhanced by interleukin-6 and soluble interleukin-6 receptor in human osteosarcoma cell lines [In Process Citation]. Clin. Exp. Metastasis 1999, 17: 857–863.

    PubMed  CAS  Google Scholar 

  102. Wesley UV, Albino AP, Tiwari S, Houghton AN. A role for dipeptidyl peptidase IV in suppressing the malignant phenotype of melanocytic cells. J. Exp. Med. 190: 311–322.

    Google Scholar 

  103. Pethiyagoda CL, Welch DR, Fleming TP. Dipeptidyl peptidase IV (DPPIV) inhibits cellular invasion of melanoma cells. Clin. Exp. Metastasis 2000, 18: 391–400.

    PubMed  CAS  Google Scholar 

  104. Kosir MA, Quinn CC. Sorting of heparan sulfate proteoglycan into matrix compartments of prostate adenocarcinoma cells. J. Surg. Res. 1995, 58: 46–52.

    PubMed  CAS  Google Scholar 

  105. Friedmann Y, Vlodavsky I, Aingorn H, Aviv A, Peretz T, Pecker I, Pappo O. Expression of heparanase in normal, dysplastic, and neoplastic human colonic mucosa and stroma: evidence for its role in colonic tumorigenesis [In Process Citation]. Am. J. Pathol. 2000, 157: 1167–1175.

    PubMed  CAS  Google Scholar 

  106. Vlodavsky I, Elkin M, Pappo O, Aingorn H, Atzmon R, Ishai-Michaeli R, Aviv A, Pecker I, Friedmann Y. Mammalian heparanase as mediator of tumor metastasis and angiogenesis. Isr. Med. Assoc. J. 2000, Suppl: 37–45.

    Google Scholar 

  107. Vlodavsky I, Friedmann Y, Elkin M, Aingorn H, Atzmon R, Ishai-Michaeli R, Bitan M, Pappo O, Peretz T, Michal I, Spector L, Pecker I. Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat. Med. 1999, 5: 793–802.

    PubMed  CAS  Google Scholar 

  108. Reiland J, Sanderson RD, Waguespack M, Barker SA, Long R, Carson DD, Marchetti D. Heparanase degrades syndecan-1 and perlecan heparan sulfate: functional implications for tumor cell invasion. J. Biol. Chem. 2004, 279: 8047–8055.

    PubMed  CAS  Google Scholar 

  109. Denkins Y, Reiland J, Roy M, Sinnappah-Kang ND, Galjour J, Murry BP, Blust J, Aucoin R, Marchetti D. Brain metastases in melanoma: roles of neurotrophins. Neuro — oncol. 2004, 6: 154–165.

    PubMed  CAS  Google Scholar 

  110. Marchetti D, Aucoin R, Blust J, Murry B, Greiter-Wilke A. p75 neurotrophin receptor functions as a survival receptor in brain-metastatic melanoma cells. J. Cell Biochem. 2004, 91: 206–215.

    PubMed  CAS  Google Scholar 

  111. Marchetti D, Nicolson GL. Human heparanase: a molecular determinant of brain metastasis. Adv. Enzyme Regul. 2001, 41:343–59: 343–359.

    PubMed  CAS  Google Scholar 

  112. Marchetti D, McQuillan DJ, Spohn WC, Carson DD, Nicolson GL. Neurotrophin stimulation of human melanoma cell invasion: selected enhancement of heparanase activity and heparanase degradation of specific heparan sulfate subpopulations. Cancer Res. 1996, 56: 2856–2863.

    PubMed  CAS  Google Scholar 

  113. Csoka TB, Frost GI, Stern R. Hyaluronidases in tissue invasion. Invasion Metastasis 1997, 17: 297–311.

    PubMed  CAS  Google Scholar 

  114. Maleski M, Hockfield S. Glial cells assemble hyaluronan-based pericellular matrices in vitro. Glia 1997, 20: 193–202.

    PubMed  CAS  Google Scholar 

  115. Madan AK, Pang Y, Wilkiemeyer MB, Yu D, Beech DJ. Increased hyaluronidase expression in more aggressive prostate adenocarcinoma. Oncol. Rep. 1999, 6: 1431–1433.

    PubMed  CAS  Google Scholar 

  116. Madan AK, Yu K, Dhurandhar N, Cullinane C, Pang Y, Beech DJ. Association of hyaluronidase and breast adenocarcinoma invasiveness. Oncol. Rep. 1999, 6: 607–609.

    PubMed  CAS  Google Scholar 

  117. Pham HT, Block NL, Lokeshwar VB. Tumor-derived hyaluronidase: a diagnostic urine marker for high-grade bladder cancer. Cancer Res. 1997, 57: 778–783.

    PubMed  CAS  Google Scholar 

  118. Novak U, Stylli SS, Kaye AH, Lepperdinger G. Hyaluronidase-2 overexpression accelerates intracerebral but not subcutaneous tumor formation of murine astrocytoma cells. Cancer Res. 1999, 59: 6246–6250.

    PubMed  CAS  Google Scholar 

  119. Victor R, Chauzy C, Girard N, Gioanni J, d’Anjou J, Stora DN, Delpech B. Human breast-cancer metastasis formation in a nude-mouse model: studies of hyaluronidase, hyaluronan and hyaluronan-binding sites in metastatic cells. Int. J. Cancer 1999, 82: 77–83.

    PubMed  CAS  Google Scholar 

  120. Liu D, Pearlman E, Diaconu E, Guo K, Mori H, Haqqi T, Markowitz S, Willson J, Sy MS. Expression of hyaluronidase by tumor cells induces angiogenesis in vivo. Proc. Natl. Acad. Sci. USA 1996, 93: 7832–7837.

    PubMed  CAS  Google Scholar 

  121. Frisch SM, Ruoslahti E. Integrins and anoikis. Curr. Opin. Cell Biol. 1997, 9: 701–706.

    PubMed  CAS  Google Scholar 

  122. Judson PL, He X, Cance WG, Van Le L. Overexpression of focal adhesion kinase, a protein tyrosine kinase, in ovarian carcinoma. Cancer 1999, 86: 1551–1556.

    PubMed  CAS  Google Scholar 

  123. Owens LV, Xu L, Craven RJ, Dent GA, Weiner TM, Kornberg L, Liu ET, Cance WG. Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res. 1995, 55: 2752–2755.

    PubMed  CAS  Google Scholar 

  124. Weiner TM, Liu ET, Craven RJ, Cance WG. Expression of focal adhesion kinase gene and invasive cancer. Lancet. 1993, 342: 1024–1025.

    PubMed  CAS  Google Scholar 

  125. Kornberg LJ. Focal adhesion kinase and its potential involvement in tumor invasion and metastasis. Head Neck 1998, 20: 745–752.

    PubMed  CAS  Google Scholar 

  126. Shibata K, Kikkawa F, Nawa A, Thant AA, Naruse K, Mizutani S, Hamaguchi M. Both focal adhesion kinase and c-Ras are required for the enhanced matrix metalloproteinase 9 secretion by fibronectin in ovarian cancer cells. Cancer Res. 1998, 58: 900–903.

    PubMed  CAS  Google Scholar 

  127. Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev. 1997, 11: 3286–3305.

    PubMed  CAS  Google Scholar 

  128. Polakis P. The oncogenic activation of beta-catenin. Curr. Opin. Genet. Dev. 1999, 9: 15–21.

    PubMed  CAS  Google Scholar 

  129. Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu. Rev. Cell Dev. Biol. 1998, 14:59–88.: 59–88.

    PubMed  CAS  Google Scholar 

  130. Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT. The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 10: 1443–1454.

    Google Scholar 

  131. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 1997, 275: 1787–1790.

    PubMed  CAS  Google Scholar 

  132. Wijnhoven BP, Nollet F, De Both NJ, Tilanus HW, Dinjens WN. Genetic alterations involving exon 3 of the beta-catenin gene do not play a role in adenocarcinomas of the esophagus. Int. J. Cancer 2000, 86: 533–537.

    PubMed  CAS  Google Scholar 

  133. Brabletz T, Jung A, Hermann K, Gunther K, Hohenberger W, Kirchner T. Nuclear overexpression of the oncoprotein beta-catenin in colorectal cancer is localized predominantly at the invasion front. Pathol. Res. Pract. 1998, 194: 701–704.

    PubMed  CAS  Google Scholar 

  134. Brabletz T, Jung A, Dag S, Hlubek F, Kirchner T. beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am. J. Pathol. 1999, 155: 1033–1038.

    PubMed  CAS  Google Scholar 

  135. Conacci-Sorrell ME, Ben Yedidia T, Shtutman M, Feinstein E, Einat P, Ben Ze’ev A. Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev. 2002, 16: 2058–2072.

    PubMed  CAS  Google Scholar 

  136. Dai DL, Makretsov N, Campos EI, Huang C, Zhou Y, Huntsman D, Martinka M, Li G. Increased expression of integrin-linked kinase is correlated with melanoma progression and poor patient survival. Clin. Cancer Res. 2003, 9: 4409–4414.

    PubMed  CAS  Google Scholar 

  137. Blesch A, Bosserhoff AK, Apfel R, Behl C, Hessdoerfer B, Schmitt A, Jachimczak P, Lottspeich F, Buettner R, Bogdahn U. Cloning of a novel malignant melanoma-derived growth-regulatory protein, MIA. Cancer Res. 1994, 54: 5695–5701.

    PubMed  CAS  Google Scholar 

  138. Bosserhoff AK, Kaufmann M, Kaluza B, Bartke I, Zirngibl H, Hein R, Stolz W, Buettner R. Melanoma-inhibiting activity, a novel serum marker for progression of malignant melanoma. Cancer Res. 1997, 57: 3149–3153.

    PubMed  CAS  Google Scholar 

  139. Bosserhoff AK, Buettner R. Expression, function and clinical relevance of MIA (melanoma inhibitory activity). Histol. Histopath. 2002, 17: 289–300.

    CAS  Google Scholar 

  140. Dreau D, Bosserhoff AK, White RL, Buettner R, Holder WD. Melanoma-inhibitory activity protein concentrations in blood of melanoma patients treated with immunotherapy. Oncol. Res. 1999, 11: 55–61.

    PubMed  CAS  Google Scholar 

  141. Deichmann M, Benner A, Bock M, Jackel A, Uhl K, Waldmann V, Naher H. S100-Beta, melanoma-inhibiting activity, and lactate dehydrogenase discriminate progressive from nonprogressive American Joint Committee on Cancer stage IV melanoma. J. Clin. Oncol. 1999, 17: 1891–1896.

    PubMed  CAS  Google Scholar 

  142. van Groningen JJ, Bloemers HP, Swart GW. Identification of melanoma inhibitory activity and other differentially expressed messenger RNAs in human melanoma cell lines with different metastatic capacity by messenger RNA differential display. Cancer Res. 1995, 55: 6237–6243.

    PubMed  Google Scholar 

  143. Bosserhoff AK, Moser M, Hein R, Landthaler M, Buettner R. In situ expression patterns of melanoma-inhibiting activity (MIA) in melanomas and breast cancers. J. Pathol. 1999, 187: 446–454.

    PubMed  CAS  Google Scholar 

  144. Guba M, Bosserhoff AK, Steinbauer M, Abels C, Anthuber M, Buettner R, Jauch KW. Overexpression of melanoma inhibitory activity (MIA) enhances extravasation and metastasis of A-mel 3 melanoma cells in vivo. Br. J. Cancer 2000, 83: 1216–1222.

    PubMed  CAS  Google Scholar 

  145. Bosserhoff AK, Stoll R, Sleeman JP, Bataille F, Buettner R, Holak TA. Active detachment involves inhibition of cell-matrix contacts of malignant melanoma cells by secretion of melanoma inhibitory activity. Lab. Invest. 2003, 83: 1583–1594.

    PubMed  CAS  Google Scholar 

  146. Stoll R, Renner C, Ambrosius D, Golob M, Voelter W, Buettner R, Bosserhoff AK, Holak TA. Letter to the editor: Sequence-specific 1H, 13C, and 15N assignment of the human melanoma inhibitory activity (MIA) protein. J. Biomol. NMR 2000, 17: 87–88.

    PubMed  CAS  Google Scholar 

  147. Bourguignon LY, Zhu H, Shao L, Chen YW. Ankyrin-Tiam1 interaction promotes Rac1 signaling and metastatic breast tumor cell invasion and migration. J. Cell Biol. 2000, 150: 177–191.

    PubMed  CAS  Google Scholar 

  148. Habets GG, Scholtes EH, Zuydgeest D, van der Kammen RA, Stam JC, Berns A, Collard JG. Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell 1994, 77: 537–549.

    PubMed  CAS  Google Scholar 

  149. Michiels F, Habets GG, Stam JC, van der Kammen RA, Collard JG. A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature 1995, 375: 338–340.

    PubMed  CAS  Google Scholar 

  150. Habets GG, van der Kammen RA, Stam JC, Michiels F, Collard JG. Sequence of the human invasion-inducing TIAM1 gene, its conservation in evolution and its expression in tumor cell lines of different tissue origin. Oncogene 1995, 10: 1371–1376.

    PubMed  CAS  Google Scholar 

  151. Paley PJ, Goff BA, Gown AM, Greer BE, Sage EH. Alterations in SPARC and VEGF immunoreactivity in epithelial ovarian cancer. Gynecol. Oncol. 2000, 78: 336–341.

    PubMed  CAS  Google Scholar 

  152. Thomas R, True LD, Bassuk JA, Lange PH, Vessella RL. Differential expression of osteonectin/SPARC during human prostate cancer progression. Clin. Cancer Res. 2000, 6: 1140–1149.

    PubMed  CAS  Google Scholar 

  153. Massi D, Franchi A, Borgognoni L, Reali UM, Santucci M. Osteonectin expression correlates with clinical outcome in thin cutaneous malignant melanomas. Hum. Pathol. 1999, 30: 339–344.

    PubMed  CAS  Google Scholar 

  154. Porte H, Triboulet JP, Kotelevets L, Carrat F, Prevot S, Nordlinger B, DiGioia Y, Wurtz A, Comoglio P, Gespach C, Chastre E. Overexpression of stromelysin-3, BM-40/SPARC, and MET genes in human esophageal carcinoma: implications for prognosis. Clin. Cancer Res. 1998, 4: 1375–1382.

    PubMed  CAS  Google Scholar 

  155. Golembieski WA, Ge S, Nelson K, Mikkelsen T, Rempel SA. Increased SPARC expression promotes U87 glioblastoma invasion in vitro. Int. J. Dev. Neurosci. 1999, 17: 463–472.

    PubMed  CAS  Google Scholar 

  156. Kato Y, Frankenne F, Noel A, Sakai N, Nagashima Y, Koshika S, Miyazaki K, Foidart JM. High production of SPARC/osteonectin/BM-40 in mouse metastatic B16 melanoma cell lines. Pathol. Oncol. Res. 2000, 6: 24–26.

    PubMed  CAS  Google Scholar 

  157. Gilles C, Bassuk JA, Pulyaeva H, Sage EH, Foidart JM, Thompson EW. SPARC/osteonectin induces matrix metalloproteinase 2 activation in human breast cancer cell lines. Cancer Res. 1998, 58: 5529–5536.

    PubMed  CAS  Google Scholar 

  158. Ledda MF, Adris S, Bravo AI, Kairiyama C, Bover L, Chernajovsky Y, Mordoh J, Podhajcer OL. Suppression of SPARC expression by antisense RNA abrogates the tumorigenicity of human melanoma cells. Nat. Med. 1997, 3: 171–176.

    PubMed  CAS  Google Scholar 

  159. Kato Y, Frankenne F, Noel A, Sakai N, Nagashima Y, Koshika S, Miyazaki K, Foidart JM. High production of SPARC/osteonectin/BM-40 in mouse metastatic B16 melanoma cell lines. Pathol. Oncol. Res. 2000, 6: 24–26.

    PubMed  CAS  Google Scholar 

  160. Xiang YY, Wang DY, Tanaka M, Suzuki M, Kiyokawa E, Igarashi H, Naito Y, Shen Q, Sugimura H. Expression of high-mobility group-1 mRNA in human gastrointestinal adenocarcinoma and corresponding non-cancerous mucosa. Int. J. Cancer 1997, 74: 1–6.

    PubMed  CAS  Google Scholar 

  161. Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, Tanji N, Lu Y, Lalla E, Fu C, Hofmann MA, Kislinger T, Ingram M, Lu A, Tanaka H, Hori O, Ogawa S, Stern DM, Schmidt AM. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 2000, 405: 354–360.

    PubMed  CAS  Google Scholar 

  162. Huttunen HJ, Fages C, Kuja-Panula J, Ridley AJ, Rauvala H. Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res. 2002, 62: 4805–4811.

    PubMed  CAS  Google Scholar 

  163. Fages C, Nolo R, Huttunen HJ, Eskelinen E, Rauvala H. Regulation of cell migration by amphoterin. J. Cell Sci. 2000, 113: 611–620.

    PubMed  CAS  Google Scholar 

  164. Hendrix MJ, Seftor EA, Hess AR, Seftor RE. Molecular plasticity of human melanoma cells. Oncogene 2003, %19; 22: 3070–3075.

    PubMed  CAS  Google Scholar 

  165. Easty DJ, Bennett DC. Protein tyrosine kinases in malignant melanoma. Melanoma. Res. 2000, 10: 401–411.

    PubMed  CAS  Google Scholar 

  166. Straume O, Akslen LA. Importance of vascular phenotype by basic fibroblast growth factor, and influence of the angiogenic factors basic fibroblast growth factor/fibroblast growth factor receptor-1 and ephrin-A1/EphA2 on melanoma progression. Am. J. Pathol. 2002, 160: 1009–1019.

    PubMed  CAS  Google Scholar 

  167. Dupin E, Le Douarin NM. Development of melanocyte precursors from the vertebrate neural crest. Oncogene 2003, 22: 3016–3023.

    PubMed  CAS  Google Scholar 

  168. Yohn JJ, Smith C, Stevens T, Hoffman TA, Morelli JG, Hurt DL, Yanagisawa M, Kane MA, Zamora MR. Human melanoma cells express functional endothelin-1 receptors. Biochem. Biophys. Res. Commun. 1994, 201: 449–457.

    CAS  Google Scholar 

  169. Demunter A, Wolf-Peeters C, Degreef H, Stas M, van den Oord JJ. Expression of the endothelin-B receptor in pigment cell lesions of the skin. Evidence for its role as tumor progression marker in malignant melanoma. Virchows Arch. 2001, 438: 485–491.

    PubMed  CAS  Google Scholar 

  170. Bagnato A, Rosano L, Spinella F, Di C, V, Tecce R, Natali PG. Endothelin B receptor blockade inhibits dynamics of cell interactions and communications in melanoma cell progression. Cancer Res. 2004, 64: 1436–1443.

    PubMed  CAS  Google Scholar 

  171. Jamal S, Schneider RJ. UV-induction of keratinocyte endothelin-1 downregulates Ecadherin in melanocytes and melanoma cells. J. Clin. Invest. 2002, 110: 443–452.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Bosserhoff, A.K. (2006). Motility in Melanoma Progression. In: Wells, A. (eds) Cell Motility in Cancer Invasion and Metastasis. Cancer Metastasis - Biology and Treatment, vol 8. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4009-1_12

Download citation

Publish with us

Policies and ethics