Skip to main content

Structural Symmetry, Elastic Compatibility, and the Intrinsic Heterogeneity of Complex Oxides

  • Conference paper
Book cover Symmetry and Heterogeneity in High Temperature Superconductors

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 214))

  • 546 Accesses

Abstract

Intrinsic heterogeneity, from nano- to meso- scales, of lattice/charge/spin variables, is common in complex oxides such as cuprates and manganites, that have strain-based ferroelastic transitions. We summarize our viewpoint that the central player is the power-law, anisotropic, strain-strain force that lies concealed in the apparently innocuous St. Venant compatibility constraint, namely the maintenance of lattice integrity, under strain texturing induced by charges and spins, that act as ‘local stresses’ and ‘local transition temperatures’

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Dagotto, (Ed.) Nanoscale Phase Separation and Colossal Magnetoresistance, Springer (2003).

    Google Scholar 

  2. A.R. Bishop, S.R. Shenoy and S. Sridhar (Eds.) Intrinsic Multiscale Structure and Dynamics in Complex Electronic Oxides, World Scientific (2003).

    Google Scholar 

  3. A. Bianconi, N.L. Saini, A. Lanzara, M. Missori, T. Rosetti, H. Oyanagi, H. Yamguchi, K. Oka and T. Ito, Phys. Rev. Lett. 76, 3412 (1996); E.S. Bozin, G.H. Kwei, H. Takagi and S.J.L. Billinge, Phys. Rev. Lett. 84, 5856 (2000); K.M. Lang, V. Madhavan, J.E. Hoffman, E.W. Hudson, H. Eisaki, S. Uchida and J.C. Davis, Nature 415, 412 (2002).

    Article  CAS  Google Scholar 

  4. Y. Huang, I.M. Palstra, S.W. Cheong and B. Batlogg, Phys. Rev. B 52, 15046 (1995)

    Article  Google Scholar 

  5. M. Faeth, S. Friesen, A.A. Menovsky, Y. Tomloka, J. Aarts and J.A. Mydosh, Science 285, 1540 (1999).

    Article  Google Scholar 

  6. Y. Ando in Ref. S.R. Shenoy and S. Sridhar (Eds.) Intrinsic Multiscale Structure and Dynamics in Complex Electronic Oxides, World Scientific (2003) [2].

    Google Scholar 

  7. S.R. Shenoy, T. Lookman, A. Saxena and A. R. Bishop, Phys. Rev. B 60, R12537 (1999).

    Article  CAS  Google Scholar 

  8. T. Lookman, S. R. Shenoy, K.O. Rasmussen, A. Saxena and A.R. Bishop, Phys. Rev. B, 67, 024114 (2003); T. Lookman, S. R. Shenoy, K.O. Rasmussen, A. Saxena and A.R. Bishop, J. de Physique IV, ICOMAT-02 Proc. (2003).

    Article  Google Scholar 

  9. K.O. Rasmussen, T. Lookman, A. Saxena, A.R. Bishop, R. C. Albers and S.R. Shenoy, Phys. Rev. Lett. 87, 055704 (2001).

    Article  CAS  Google Scholar 

  10. A.R. Bishop, T. Lookman, A. Saxena and S.R. Shenoy, Europhysics Lett. 63, 289 (2003).

    Article  CAS  Google Scholar 

  11. S.R. Shenoy, T. Lookman, A. Saxena and A.R. Bishop, in Ref. [2].

    Google Scholar 

  12. A. Saxena, T. Lookman, A.R. Bishop and S.R. Shenoy, in Ref. S.R. Shenoy and S. Sridhar (Eds.) Intrinsic Multiscale Structure and Dynamics in Complex Electronic Oxides, World Scientific (2003) [2]; D.M. Hatch, T. Lookman, A. Saxena and S.R. Shenoy, Phys. Rev. B 68, 104105 (2003).

    Google Scholar 

  13. A.J.C. Barre de Saint-Venant in C.L.M.H. Navier, Resume’ des Lecons sur l’Application de la Mechanique (Dunod, Paris, 1864).

    Google Scholar 

  14. S.F. Borg, Fundamentals of Engineering Elasticity, Second edn. 1990, World Scientific.

    Google Scholar 

  15. M. Baus and R. Lovett, Phys. Rev. Lett. 65, 1781 (1990); 67, 406 (1991); Phys. Rev. A 44, 1211 (1991).

    Article  Google Scholar 

  16. S. Kartha, J.A. Krumhansl, J.P. Sethna and L.K. Wickham, Phys. Rev. B 52, 803 (1995)

    Article  CAS  Google Scholar 

  17. The ‘normalization’ factors are chosen so that for e 1,e 2 in 2D \( (E_{xx} 2 + E_{yy} 2)/2 = 1; \) or for e 3 in 3D, \( (4E_{xx} 2 + E_{yy} 2 + E_{zz} 2)/6 = 1 \), at \( |E_{xx} | = |E_{yy} | = |E_{zz} | = 1 \).

    Google Scholar 

  18. A.E. Jacobs, Phys. Rev. B 52, 6327, (1995).

    Article  CAS  Google Scholar 

  19. This direct method yields the same results as the Lagrange multiplier method for finding the kernel introduced in Ref. J.A. Krumhansl, J.P. Sethna and L.K. Wickham, Phys. Rev. B 52, 803 (1995) [16] for the square-rectangle case, and used for kernels in 2D and 3D in Refs. [7–12].

    Article  CAS  Google Scholar 

  20. In Fig. 8 of Ref. S. R. Shenoy, K.O. Rasmussen, A. Saxena and A.R. Bishop, Phys. Rev. B, 67, 024114 (2003) [8], different nearly-degenerate textured states evolved under relaxational dynamics are shown. In scores of such relaxations, we have found a uniform state only once, for a particular initial-state random seed.

    Article  Google Scholar 

  21. L. Vasiliu-Doloc, S. Rosenkranz, R. Osborn, S.K. Sinha, J.W. Lynn, J. Mesot, O.H. Seeck, G. Preost, A.J. Fedro and J.F. Mitchell, Phys. Rev. Lett. 83, 4393 (1999); S. Shimomura, N. Wakabayashi, H. Kuwahara and Y. Tokura, Phys. Rev. Lett. 83, 4389 (1999); Z. Islam, X. Liu, S.K. Sinha, J.C. Lang, S.C. Moss, D. Haskel, G. Srajer, P. Wochner, D.R. Lee, D.R. Haeffner and U. Welp, Phys. Lett. 93, 157008 (2004).

    Article  CAS  Google Scholar 

  22. A.R. Bishop, T. Lookman, A. Saxena and S.R. Shenoy, cond-mat/0304198.

    Google Scholar 

  23. Ch. Renner, G. Aeppli, B-G. Kim, Y-A. Soh, and S.W. Cheong, Nature 416, 518 (2002); S.J.L. Billinge in Ref [2].

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Shenoy, S.R., Lookman, T., Saxena, A., Bishop, A.R. (2006). Structural Symmetry, Elastic Compatibility, and the Intrinsic Heterogeneity of Complex Oxides. In: Bianconi, A. (eds) Symmetry and Heterogeneity in High Temperature Superconductors. NATO Science Series II: Mathematics, Physics and Chemistry, vol 214. Springer, Dordrecht . https://doi.org/10.1007/1-4020-3989-1_9

Download citation

Publish with us

Policies and ethics