Skip to main content

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 214))

Abstract

A simple model to cover the two-component scenario of cuprate superconductivity is developed. Interband pairing interaction acts between itinerant and defect states created by doping. Two defect system subbands correspond to “hot” and “cold” regions of the momentum space. Superconductivity energetic characteristics vs doping are compared to experimental findings. Transformations of two pseudogaps into superconducting and normal state gaps can be traced. Doping concentrations where the band components begin to overlap determine essential borders on the phase diagram. Qualitative agreement with observations is present including the effect of photodoping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Suhl, B.T. Matthias, and L.R. Walker, Phys. Rev. Lett. 3, 552, (1959).

    Article  CAS  Google Scholar 

  2. V.A. Moskalenko, Electromagnetic and kinetic properties of superconducting alloys with overlapping electron bands, Shtiinza, Kishinev (1976) and references therein (1976).

    Google Scholar 

  3. N. Kristoffel, P. Konsin, and T. Örd, Nuovo Cimento 17, 1 (1994).

    CAS  Google Scholar 

  4. V.A Moskalenko, M.E. Palistrant, and V.M. Vakalyuk, Uspekhi Fiz. Nauk. 161, 155 (1991).

    CAS  Google Scholar 

  5. N. Plakida, High-temperature superconductivity, Springer, Berlin (1995).

    Google Scholar 

  6. V.J. Emery, and S.A. Kivelson, Physica C 209, 597 (1995).

    Article  Google Scholar 

  7. M.J. Salkola, et al., J. Supercond. 9, 401 (1996).

    Article  CAS  Google Scholar 

  8. T. Egami, J. Low Temp. 105, 791 (1996).

    Article  CAS  Google Scholar 

  9. A. Bianconi, et al. Phys. Rev. B 54, 12018 (1996).

    Article  CAS  Google Scholar 

  10. J.M. Tranquada, J. Supercond. 9, 397 (1997).

    Article  Google Scholar 

  11. A. Bianconi et al., Physica C 296, 269 (1998).

    Article  CAS  Google Scholar 

  12. J.C. Phillips, and J. Jung, Phil. Mag. B 81, 745 (2001).

    Article  CAS  Google Scholar 

  13. A.V. Chubukov, and D.K. Morr, Phys. Repts. 288, 355 (1997).

    Article  CAS  Google Scholar 

  14. M.G. Zacher, et al., Phys. Rev. B 85, 2585 (2000).

    CAS  Google Scholar 

  15. D. Di Castro, et al. Eur. Phys. J. B 18, 617 (2000).

    Article  Google Scholar 

  16. P. Schwaller, et al., Eur. Phys. J. B 18, 215 (2000).

    Article  CAS  Google Scholar 

  17. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).

    Article  CAS  Google Scholar 

  18. A. Ino, et al., Phys. Rev. B 65, 094504 (2002).

    Article  Google Scholar 

  19. Y. Ando, Phys. Rev. Lett. 87, 017001 (2001).

    Article  CAS  Google Scholar 

  20. C.C. Homes, et al., Phys. Rev. B 67, 184516 (2003).

    Article  Google Scholar 

  21. H. Romberg, et al. Phys. Rev. B 42, 8768 (1990).

    Article  CAS  Google Scholar 

  22. Y.J. Uemura, in “Polarons and Bipolarons” Eds. E.K.H. Salje, A.S. Alexandrov and W.Y. Liang, Cambridge Univ., p. 453 (1995).

    Google Scholar 

  23. A.S. Alexandrov, and P.P. Edwards, Physica C 331, 97, (2000).

    Article  CAS  Google Scholar 

  24. J. Lorenzana, and G. Seibold, Phys. Rev. Lett. 89, 136401 (2002)

    Article  CAS  Google Scholar 

  25. D. Mihailovic, and K.A. Müller, in Materials Aspects of High-Tc Superconductivity, NATO ASI, Kluwer, Dordrecht, 1 (1997).

    Google Scholar 

  26. K.A. Müller, Physica C 341–348, 11 (2000).

    Article  Google Scholar 

  27. A. Bianconi and N.L. Saini, Stripes and Related Phenomena, Kluwer Acad. Publ., N-Y, 2000.

    Google Scholar 

  28. T. Timusk, and B. Statt, Rep. Progr. Phys. 62, 61 (1999).

    Article  CAS  Google Scholar 

  29. A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003).

    Article  CAS  Google Scholar 

  30. A. Mouraschkine, Physica C 341–348, 917 (2000).

    Article  Google Scholar 

  31. R.M. Dipasupil, et al., J. Phys. Soc. Jpn. 71, 1535 (2002).

    Article  CAS  Google Scholar 

  32. T. Sato, et al., Physica C 341–348, 815 (2000).

    Article  Google Scholar 

  33. A. Fujimori, et al., Physica C 341–348, 2067 (2000).

    Article  Google Scholar 

  34. T. Takahashi, et al., J. Phys. Chem. Solids 62, 41, (2001).

    Article  CAS  Google Scholar 

  35. M. Oda, N. Momono, and M. Ido, in New Trends in Superconductivity, J.F. Annett, S. Kruchinin Eds., Kluwer Acad. Publ., Dordrecht, 177, (2002).

    Google Scholar 

  36. P.C., Canfield, S.L. Bud’ko, and D.K. Finnmore, Physica C 385, 1 (2003). A. Bianconi, et al., J. Phys.: Condens. Matter 13, 7383 (2001); A. Bianconi, and M. Filippi, chapter 2 of this volume.

    Article  CAS  Google Scholar 

  37. A.Y. Liu, I.I. Mazin, and J. Kortus, Phys. Rev. Lett. 87, 087005 (2001).

    Article  CAS  Google Scholar 

  38. A.A. Golubov, et al., Phys. Rev. B 66, 054524 (2002).

    Article  Google Scholar 

  39. N. Kristoffel, T. Örd, and K. Rägo, Europhys. Lett. 61, 109 (2003).

    Article  CAS  Google Scholar 

  40. N. Kristoffel, Phys. Stat. Sol. B 210, 195, (1998).

    Article  CAS  Google Scholar 

  41. L.P. Gor’kov, and A.V. Sokol, Pis’ma ZETF 46, 333 (1987).

    CAS  Google Scholar 

  42. A. Bussmann-Holder et al., J.Phys.: Cond. Matter 13, L169 (2001).

    Article  CAS  Google Scholar 

  43. A. Perali, et al., Phys. Rev. B 62, R9295 (2000).

    Article  CAS  Google Scholar 

  44. R. Micnas, S. Robaszkiewicz, and A. Bussmann-Holder, Physica C 387, 58 (2003).

    Article  CAS  Google Scholar 

  45. N. Kristoffel, and P. Rubin, Physica C 356, 171 (2001).

    Article  CAS  Google Scholar 

  46. N. Kristoffel, and P. Rubin, Solid State Commun. 122, 265 (2002).

    Article  CAS  Google Scholar 

  47. N. Kristoffel, and P. Rubin, Eur. Phys. J. B 30, 495 (2002).

    Article  CAS  Google Scholar 

  48. N. Kristoffel, Modern Phys. Lett. B 17, 451 (2003).

    Article  CAS  Google Scholar 

  49. C.C. Tsuei, and J. Kirtley, Rev. Mod. Phys. 72, 969 (2000).

    Article  CAS  Google Scholar 

  50. H. Ding, et al., Nature 382, 51 (1996).

    Article  CAS  Google Scholar 

  51. M. Moraghebi, et al., Phys. Rev. B 63, 214513 (2001).

    Article  Google Scholar 

  52. V.M. Krasnov, et al., Phys. Rev. Lett. 84, 5860 (2000).

    Article  CAS  Google Scholar 

  53. D. Mihailovic, et al., Physica C 341–348, 1731 (2000).

    Article  Google Scholar 

  54. N. Miyakawa, et al., Phys. Rev. Lett. 83, 1018 (1999).

    Article  CAS  Google Scholar 

  55. F. Venturini, et al., Phys. Rev. Lett. 89, 107003 (2002).

    Article  CAS  Google Scholar 

  56. V.I. Kudinov, Physica B 194–196, 1963 (1994).

    Article  Google Scholar 

  57. E. Osquiquil, et al., Phys. Rev. B 49, 3675 (1994).

    Article  Google Scholar 

  58. H. Szymczak, et al., Europhys. Lett. 35, 451 (1996).

    Article  CAS  Google Scholar 

  59. K. Tanabe, et al. Phys. Rev. B 52, R13152 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Kristoffel, N., Rubin, P. (2006). Modelling Cuprate Gaps in a Composite Two-Band Model. In: Bianconi, A. (eds) Symmetry and Heterogeneity in High Temperature Superconductors. NATO Science Series II: Mathematics, Physics and Chemistry, vol 214. Springer, Dordrecht . https://doi.org/10.1007/1-4020-3989-1_3

Download citation

Publish with us

Policies and ethics