Advertisement

Fracture Nucleation in Single-Wall Carbon Nanotubes

The Effect of Nanotube Chirality
  • H. Jiang
  • Y. Huang
  • P. Zhang
  • K. C. Hwang

Abstract

We develop an atomistic-based continuum theory for carbon nanotubes by incorporating the interatomic potential directly into the continuum analysis through the constitutive model. The theory accounts for the effect of carbon nanotube chirality, and is applied to study fracture nucleation in carbon nanotubes by modeling it as a bifurcation problem. The results agree well with the molecular dynamics simulations.

Key words

Carbon nanotube continuum analysis interatomic potential fracture nucleation nanotube radius 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Iijima S. “Helical Microtubules of graphite carbon”, Nature, vol. 354, pp. 56–58, 1991.CrossRefGoogle Scholar
  2. 2.
    Srivastava D, Menon M, Cho KJ. “Computational Nanotechnology with Carbon Nanotubes and Fullerenes”, Computing in Science and Engineering, vol. 3, pp. 42–55, 2001.Google Scholar
  3. 3.
    Qian D, Wagner GJ, Liu WK, Yu MF, Ruoff RS. “Mechanics of Carbon Nanotubes”, Applied Mechanics Review, 2002.Google Scholar
  4. 4.
    Wong EW, Sheehan PE, Lieber CM. “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes”, Science, vol. 277, pp. 1971–1975, 1997.CrossRefGoogle Scholar
  5. 5.
    Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load”, Science, vol. 287, pp. 637–640, 2000.CrossRefGoogle Scholar
  6. 6.
    Brenner DW. “Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films”, Physical Review B, vol. 42, pp. 9458–9471, 1990.CrossRefGoogle Scholar
  7. 7.
    Jiang H, Zhang P, Liu B, Huang Y, Geubelle PH, Gao H, Hwang KC. “The Effect of Nanotube Radius on the Constitutive Model for Carbon Nanotubes”, Computational Materials Science, vol. 28, pp. 429–442, 2003.CrossRefGoogle Scholar
  8. 8.
    Born M, Huang K. “Dynamical theory of the crystal lattices”, Oxford, Oxford University Press, 1954.Google Scholar
  9. 9.
    Zhang P, Huang Y, Geubelle PH, Klein PA, Hwang KC. “The Elastic Modulus of Single-Wall Carbon Nanotubes: A Continuum Analysis Incorporating Interatomic Potentials”, International Journal of Solids and Structures, vol. 39, pp. 3893–3906, 2002.zbMATHCrossRefGoogle Scholar
  10. 10.
    Zhang P, Jiang H, Huang Y, Geubelle PH, Hwang KC. “An atomistic-based continuum theory for carbon nanotubes: analysis of fracture nucleation”, Journal of the Mechanics and Physics of Solids, vol. 52, pp. 977–998, 2004.zbMATHCrossRefGoogle Scholar
  11. 11.
    Yakobson BI, Campbell MP, Brabec CJ, ernholc J. “High Strain Rate Fracture and C-Chain Unraveling in Carbon Nanotubes”, Computational Materials Science, vol. 8, pp. 341–348, 1997.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • H. Jiang
    • 1
  • Y. Huang
    • 1
  • P. Zhang
    • 2
  • K. C. Hwang
    • 3
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of IllinoisUrbana
  2. 2.Department of Mechanical EngineeringUniversity of ConnecticutStorrs
  3. 3.Department of Engineering MechanicsTsinghua UniversityBeijingChina

Personalised recommendations