An Ab-Initio Study of Mechanical Behavior for (Aℓ-O)n Nanorods

  • X. Song
  • Q. Ge
  • S. C. Yen


A first principles approach based on DFT was used to study the mechanical behavior of the linear (Aℓ-O)n nanorods with n spanned 1 to 10. The minimum-energy configurations for the nanostructures are first found by fully relaxing the coordinates of the atoms. Virtual tension and compression tests were then conducted by applying a series of tensile/compressive deformations to the relaxed structures and calculating the corresponding forces required to maintain the equilibrium of the deformed nanorods. Hence, A force-strain curve is obtained for all the nanorods. The mechanical response of the two shortest nanorods is like that of the ductile aluminum, but the other longer nanorods deform like the brittle aluminum oxide. All the nanorods demonstrate a much higher compressive strength than tensile strength.

Key words

first principles mechanical property alumina nanorods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Patzke, R. G., Krumeich, F., and Nesper, R., 2002, “Oxidic Nanotubes and Nanorods — Anisotropic Modules for a Future Nanotechnology,” Angew. Chem. Int. Ed., 41(14), pp. 2446–2461.CrossRefGoogle Scholar
  2. 2.
    Limmer, S. J., and Cao, G., 2003, “Sol-Gel Electrophorectic Deposition for the Growth of Oxide Nanorods,” Adv. Mater. 15(5), pp. 427–431.CrossRefGoogle Scholar
  3. 3.
    Huynh, W. U., Dittmer, J. J., and Alivisatos, A. P., 2002, “Hybrid Nanorod-Polymer Solar Cells,” Science, 295(5564), pp. 2425–2427CrossRefGoogle Scholar
  4. 4.
    Tian, YT; Meng, GW; Gao, T; Sun, SH; Xie, T; Peng, XS; Ye, CH; Zhang, LD, 2004, “Alumina Nanowire Arrays Standing on a Porous Anodic Alumina Membran,” Nanotechnology 15(1), pp. 189–191.CrossRefGoogle Scholar
  5. 5.
    Pang, YT; Meng, GW; Zhang, LD; Shan, WJ; Zhang, C; Gao, XY; Zhao, AW; Mao, YQ, 2003, “Electrochemical Synthesis of Ordered Alumina Nanowire Arrays,” J. of Solid State Electrochem. 7(6), pp. 344–347.Google Scholar
  6. 6.
    Yuan, ZH; Huang, H; and Fan SS, 2202, “Regular Alumina Nanopillar Arrays,” Adv. Mater. 14(4), pp. 303–306.CrossRefGoogle Scholar
  7. 7.
    Xiao, ZL; Han C. Y., Welp, U., Wang, HH; Kwork K. W., Willing G. A., Hiller J. M., Cook R. E., Miller D. J., and Crabtree W. G., 2002, “Fabrication of Alumina Nanotubes and Naowires by Etching Porous Alumina Membranes,” Nano Lett. 2(11), pp. 1293–1297.CrossRefGoogle Scholar
  8. 8.
    Zhou, J; Deng, SZ; Chen, J; She, JC; Xu, NX, 2002, “Synthesis of Crystalline Alumina Nanowires and Nanotrees,” Chem. Phys. Lett. 365(5–6), pp. 505–508.CrossRefGoogle Scholar
  9. 9.
    Kresse, G., Hafner, J., 1993, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47(1), pp. 558–561.CrossRefGoogle Scholar
  10. 10.
    Kresse, G., Joubert, J., 1999, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), pp. 1758–1775.CrossRefGoogle Scholar
  11. 11.
    Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., Fiolhais, C., 1992, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Phys. Rev. B 46(11), pp 6671–6687.CrossRefGoogle Scholar
  12. 12.
    Nielsen, O. H., and Martin M. R., “Quantum-Mechanical Theory of Stress and Force,” 1985, Phys. Rev. B. 32(6), pp. 3780–3791.CrossRefGoogle Scholar
  13. 13.
    Kresse, G., and Furthmüller, J., 2003, VASP the Guide, Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • X. Song
    • 1
  • Q. Ge
    • 2
  • S. C. Yen
    • 1
  1. 1.Materials Technology CenterSouthern Illinois UniversityCarbondale
  2. 2.Department of Chemistry and BiochemistrySouthern Illinois UniversityCarbondale

Personalised recommendations