Modeling the Effect of Texture on the Deformation Mechanisms of Nanocrystalline Materials at the Atomistic Scale

  • M. -J. Caturla
  • T. G. Nieh
Conference paper


Molecular dynamics simulations show significant differences in the deformation behavior of nanocrystalline nickel with low and high angle grain boundaries. At a grain size of 12nm, low angle boundary sample show enhanced dislocation activity and reduced strength with respect to high angle boundary sample. However, at a smaller grain size of 4nm, low angle boundary sample shows a higher strength, revealing a change in deformation behavior. At this grain size, regardless the type of grain boundary, no dislocation activity negligible.

Key words

Texture nanocrystalline materials molecular simulation grain boundary yield strength 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nieh, T. G., Wadsworth, J., Scripta Met. et Mat. 25, 955, 1991.CrossRefGoogle Scholar
  2. 2.
    Van Swygenhoven H., Spaczer M., Caro A., Farkas D., Phys. Rev. B, 60, 22, 1999.CrossRefGoogle Scholar
  3. 3.
    Schiøtz J., Vegge T., Di Tolla F., Jacobsen K. W., Phys. Rev. B, 60, 11971, 1999.CrossRefGoogle Scholar
  4. 4.
    Koch, C. C. Narayan, J, Mater. Res. Soc., 634, 306, 2001.Google Scholar
  5. 5.
    Schuh, C., Nieh T. G., Yamasaki, T., Scripta Mater., 46, 735, 2002.CrossRefGoogle Scholar
  6. 6.
    Lu L., Wang L. B., Ding B. Z., Lu K., J. Mater. Res., 15, 270, 2000.Google Scholar
  7. 7.
    Koch C.C., Morris D. G., Lu K., Inoue A., Mat. Res. Soc. Bulletin, 24, 54, 1999.Google Scholar
  8. 8.
    L. Lu, M. L. Sui, K. Lu, Science, 287, 1463, 2000CrossRefGoogle Scholar
  9. 9.
    Van Swygenhoven H., Spaczer M., Farkas D., Caro A., Nanostructured Materials, 12, 323 and 629, 1999.CrossRefGoogle Scholar
  10. 10.
    Okabe A., Boots B., Sugihara K., Spatial Tesselations: Concepts and Applications of Voronoi Diagrams, Wiley, Chichester, 1992Google Scholar
  11. 11.
    Morawiec A., Pospiech J., Textures and Micros. 10, 211, 1989.Google Scholar
  12. 12.
    Grimmer H., Acta. Cryst. A, 30, 685, 1974.CrossRefGoogle Scholar
  13. 13.
    Cleri F., Rosato V., Phys. Rev. B, 48, 22, 1993.CrossRefGoogle Scholar
  14. 14.
    Parinello M., Rahman A., J. Appl.Phys., 52, 7182, 1981.CrossRefGoogle Scholar
  15. 15.
    Hirth,.P., Lothe, J., Theory of Dislocations Ed.J. Wiley & Sons, NY 1982Google Scholar
  16. 16.
    Jonsson H., Andersen H.C., Phys. Rev. Lett, 60, 2295, 1988.CrossRefGoogle Scholar
  17. 17.
    Yamakov V., Wolf D., Salazar M., Phillpot S.R., Gleiter H., Acta. Mater., 49, 2713, 2001.CrossRefGoogle Scholar
  18. 18.
    Van Swygenhoven H., Derlet P., Phys. Rev. B, 64, 224105, 2001.CrossRefGoogle Scholar
  19. 19.
    Wadsworth J. and Pelton A.R., Scripta Metall., 18, 387, 1984.CrossRefGoogle Scholar
  20. 20.
    Chandra N., Dang P., J. of Mat. Sci., 34, 65, 1999.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • M. -J. Caturla
    • 1
  • T. G. Nieh
    • 2
  1. 1.Departament de Fisica Aplicada, Facultat de Ciencies. Fase IIUniversitat d’AlacantAlacantSpain
  2. 2.Department of Metrials Science and EngineeringThe University of TennesseeKnoxville

Personalised recommendations