Skip to main content

Rough Surface Plasticity and Adhesion across Length Scales

  • Conference paper
Nanomechanics of Materials and Structures

Abstract

The study of interacting rough surfaces, especially at mesoscale and nanoscale, has been playing a central role in a broad spectrum of novel applications, e.g. nanostructure fabrication and reliability. The multiscale nature of surface roughness, the structure- and size-sensitive material deformation behavior, and the importance of surface forces and other physical interactions give rise to very complex surface phenomena at mesoscale and nanoscale. In this work, we present a contact mechanics model based on the power spectral density function of the surface roughness. This is more relevant to large-scale rough surface contact with the use of classic plasticity theory. If using phenomenological strain-gradient plasticity theory, we can show that one can only flatten asperities in a certain frequency interval of the roughness spectrum. We also present a new scheme of modeling rough surface adhesion by using the Dugdale model and the self-affine fractal surface, which leads to a discussion of gecko adhesion. We also present some of our perspectives about the interaction between adhesion and micro-plasticity for, e.g., nano-imprinting and nano-welding applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Singer IL, Pollock HM. Fundamentals of friction: macroscopic and microscopic processes, Kluwer Academic, Boston, 1992.

    Google Scholar 

  2. Bhushan B. Handbook of micro/nanotribology, CRC Press, 1999.

    Google Scholar 

  3. Greenwood JA, Williamson JBP. “Contact of nominally flat surfaces”, Proc. R. Soc. Lond. A, vol. 295, pp. 300–319, 1966.

    Google Scholar 

  4. Majumdar A, Bhushan B. “Fractal model of elastic-plastic contact between rough Surfaces”, ASME J. Tribol., vol. 113, pp. 1–11, 1991.

    Article  Google Scholar 

  5. Greenwood JA, Wu JJ. “Surface roughness and contact: an apology”, Meccanica, vol. 36, pp. 617–630, 2001.

    Article  MATH  Google Scholar 

  6. Nix WD, Gao H. “Indentation size effects in crystalline materials: a law for strain gradient plasticity”, J. Mech. Phys. Solids, vol. 46, pp. 411–425, 1998.

    Article  MATH  Google Scholar 

  7. Bhushan B, Nosonosky M. “Scale effects in friction using strain gradient plasticity and dislocation-assisted sliding (microslip)”, Acta Mater., vol. 51, pp. 4331–4345, 2003.

    Article  Google Scholar 

  8. Hurtado JA, Kim K-S. “Scale effects in friction of single-asperity contacts. I. From concurrent slip to single-dislocation-assisted slip”, Proc. R. Soc. Lond. A, vol. 455, pp. 3363–3384, 1999. “II. Multiple-dislocation-cooperated slip”, ibid, pp. 3385–3400.

    MATH  Google Scholar 

  9. Yu HH, Shrotriya P, Wang J, Kim K-S. 2004, “Dislocation nucleation and segregation in nano-scale contact of stepped surfaces”, Mat. Res. Soc. Symp. Proc., vol. 795, 7.9, 2004.

    Google Scholar 

  10. Johnson KL. “Mechanics of adhesion”, Tribo. Int., vol. 31, pp. 413–418, 1998.

    Article  Google Scholar 

  11. Greenwood JA. “A unified theory of surface roughness”, Proc. Roy. Sco. Lond. A, vol. 393, pp. 133–157, 1984.

    Google Scholar 

  12. McCool JI. “Comparison of models for the contact of rough surface”, Wear, vol. 107, pp. 37–60, 1986.

    Article  Google Scholar 

  13. Yan W, Komvopoulos K. “Contact analysis of elastic-plastic fractal surfaces”, J. Appl. Phys., vol. 84, pp. 3617–3624, 1998.

    Article  Google Scholar 

  14. Archard JF. “Elastic deformation and the laws of friction”, Proc. R. Soc. Lond. A, vol. 243, pp. 190–205, 1957.

    Google Scholar 

  15. Ciavarella M, Demelio G, Barber JR, Jang YH. “Linear elastic contact of the Weierstrass Profile”, Proc. R. Soc. Lond. A, vol. 456, pp. 387–405, 2000.

    MATH  MathSciNet  Google Scholar 

  16. Persson BNJ. “Elastoplastic contact between randomly rough surfaces”, Phys. Rev. Lett., vol. 87, art no. 116101, 2001.

    Google Scholar 

  17. Gao YF, Bower AF. Submitted for publication, 2004.

    Google Scholar 

  18. Borri-Brunetto M, Carpinteri A, Chiaia B. “Scaling phenomena due to fractal contact in concrete and rock fractures”, Int. J. Fract., vol. 95, pp. 221–238, 1999.

    Article  Google Scholar 

  19. Buzio R, Boragno C, Biscarini F, de Mongeot FB, Valbusa U. “The contact mechanics of fractal surfaces”, Nature Mater., vol. 2, pp. 233–236, 2003.

    Article  Google Scholar 

  20. Johnson KL, Kendall K, Roberts AD. “Surface energy and the contact of elastic solids”, Proc. R. Soc. Lond. A, vol. 324, pp. 301–313, 1971.

    Article  Google Scholar 

  21. Derjaguin BV, Muller VM, Toporov YP. “Effect of contact deformations on the adhesion of particles”, J. Coll. Interface Sci., vol. 53, pp. 314–326, 1975.

    Article  Google Scholar 

  22. Maugis D. “Adhesion of spheres: the JKR-DMT transition using a Dugdale model”, J. Coll. Interface Sci., vol. 150, pp. 243–269, 1992.

    Article  Google Scholar 

  23. Gao YF, Bower AF. Unpublished work, 2004.

    Google Scholar 

  24. Gao YF, Bower AF. “A simple technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces”, Modelling Simul. Mater. Sci. Eng., vol. 12, pp. 453–463, 2004.

    Article  Google Scholar 

  25. Qi Y, Cheng Y-T, Cagin T, Goddard III WA. “Friction anisotropy at Ni(100)/(100) interfaces: molecular dynamics studies”, Phys. Rev. B, vol. 66, art no. 085420, 2002.

    Google Scholar 

  26. Cha P-R, Srolovitz DJ, Vanderlick TK. “Molecular dynamics simulation of single asperity contact”, Acta Mater., vol. 52, pp. 3983–3996, 2004.

    Article  Google Scholar 

  27. Forrest SR. “The path to ubiquitous and low-cost organic electronic appliances on Plastic”, Nature, vol. 428, pp. 911–918, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Gao, YF., Bower, A.F. (2006). Rough Surface Plasticity and Adhesion across Length Scales. In: Chuang, T.J., Anderson, P.M., Wu, M.K., Hsieh, S. (eds) Nanomechanics of Materials and Structures. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3951-4_27

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3951-4_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3950-8

  • Online ISBN: 978-1-4020-3951-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics