Rough Surface Plasticity and Adhesion across Length Scales

  • Yan-Fei Gao
  • Allan F. Bower


The study of interacting rough surfaces, especially at mesoscale and nanoscale, has been playing a central role in a broad spectrum of novel applications, e.g. nanostructure fabrication and reliability. The multiscale nature of surface roughness, the structure- and size-sensitive material deformation behavior, and the importance of surface forces and other physical interactions give rise to very complex surface phenomena at mesoscale and nanoscale. In this work, we present a contact mechanics model based on the power spectral density function of the surface roughness. This is more relevant to large-scale rough surface contact with the use of classic plasticity theory. If using phenomenological strain-gradient plasticity theory, we can show that one can only flatten asperities in a certain frequency interval of the roughness spectrum. We also present a new scheme of modeling rough surface adhesion by using the Dugdale model and the self-affine fractal surface, which leads to a discussion of gecko adhesion. We also present some of our perspectives about the interaction between adhesion and micro-plasticity for, e.g., nano-imprinting and nano-welding applications.

Key words

Multiscale roughness roughness evolution size-dependent plasticity rough surface adhesion micromechanics of surface plasticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Singer IL, Pollock HM. Fundamentals of friction: macroscopic and microscopic processes, Kluwer Academic, Boston, 1992.Google Scholar
  2. 2.
    Bhushan B. Handbook of micro/nanotribology, CRC Press, 1999.Google Scholar
  3. 3.
    Greenwood JA, Williamson JBP. “Contact of nominally flat surfaces”, Proc. R. Soc. Lond. A, vol. 295, pp. 300–319, 1966.Google Scholar
  4. 4.
    Majumdar A, Bhushan B. “Fractal model of elastic-plastic contact between rough Surfaces”, ASME J. Tribol., vol. 113, pp. 1–11, 1991.CrossRefGoogle Scholar
  5. 5.
    Greenwood JA, Wu JJ. “Surface roughness and contact: an apology”, Meccanica, vol. 36, pp. 617–630, 2001.zbMATHCrossRefGoogle Scholar
  6. 6.
    Nix WD, Gao H. “Indentation size effects in crystalline materials: a law for strain gradient plasticity”, J. Mech. Phys. Solids, vol. 46, pp. 411–425, 1998.zbMATHCrossRefGoogle Scholar
  7. 7.
    Bhushan B, Nosonosky M. “Scale effects in friction using strain gradient plasticity and dislocation-assisted sliding (microslip)”, Acta Mater., vol. 51, pp. 4331–4345, 2003.CrossRefGoogle Scholar
  8. 8.
    Hurtado JA, Kim K-S. “Scale effects in friction of single-asperity contacts. I. From concurrent slip to single-dislocation-assisted slip”, Proc. R. Soc. Lond. A, vol. 455, pp. 3363–3384, 1999. “II. Multiple-dislocation-cooperated slip”, ibid, pp. 3385–3400.zbMATHGoogle Scholar
  9. 9.
    Yu HH, Shrotriya P, Wang J, Kim K-S. 2004, “Dislocation nucleation and segregation in nano-scale contact of stepped surfaces”, Mat. Res. Soc. Symp. Proc., vol. 795, 7.9, 2004.Google Scholar
  10. 10.
    Johnson KL. “Mechanics of adhesion”, Tribo. Int., vol. 31, pp. 413–418, 1998.CrossRefGoogle Scholar
  11. 11.
    Greenwood JA. “A unified theory of surface roughness”, Proc. Roy. Sco. Lond. A, vol. 393, pp. 133–157, 1984.Google Scholar
  12. 12.
    McCool JI. “Comparison of models for the contact of rough surface”, Wear, vol. 107, pp. 37–60, 1986.CrossRefGoogle Scholar
  13. 13.
    Yan W, Komvopoulos K. “Contact analysis of elastic-plastic fractal surfaces”, J. Appl. Phys., vol. 84, pp. 3617–3624, 1998.CrossRefGoogle Scholar
  14. 14.
    Archard JF. “Elastic deformation and the laws of friction”, Proc. R. Soc. Lond. A, vol. 243, pp. 190–205, 1957.Google Scholar
  15. 15.
    Ciavarella M, Demelio G, Barber JR, Jang YH. “Linear elastic contact of the Weierstrass Profile”, Proc. R. Soc. Lond. A, vol. 456, pp. 387–405, 2000.zbMATHMathSciNetGoogle Scholar
  16. 16.
    Persson BNJ. “Elastoplastic contact between randomly rough surfaces”, Phys. Rev. Lett., vol. 87, art no. 116101, 2001.Google Scholar
  17. 17.
    Gao YF, Bower AF. Submitted for publication, 2004.Google Scholar
  18. 18.
    Borri-Brunetto M, Carpinteri A, Chiaia B. “Scaling phenomena due to fractal contact in concrete and rock fractures”, Int. J. Fract., vol. 95, pp. 221–238, 1999.CrossRefGoogle Scholar
  19. 19.
    Buzio R, Boragno C, Biscarini F, de Mongeot FB, Valbusa U. “The contact mechanics of fractal surfaces”, Nature Mater., vol. 2, pp. 233–236, 2003.CrossRefGoogle Scholar
  20. 20.
    Johnson KL, Kendall K, Roberts AD. “Surface energy and the contact of elastic solids”, Proc. R. Soc. Lond. A, vol. 324, pp. 301–313, 1971.CrossRefGoogle Scholar
  21. 21.
    Derjaguin BV, Muller VM, Toporov YP. “Effect of contact deformations on the adhesion of particles”, J. Coll. Interface Sci., vol. 53, pp. 314–326, 1975.CrossRefGoogle Scholar
  22. 22.
    Maugis D. “Adhesion of spheres: the JKR-DMT transition using a Dugdale model”, J. Coll. Interface Sci., vol. 150, pp. 243–269, 1992.CrossRefGoogle Scholar
  23. 23.
    Gao YF, Bower AF. Unpublished work, 2004.Google Scholar
  24. 24.
    Gao YF, Bower AF. “A simple technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces”, Modelling Simul. Mater. Sci. Eng., vol. 12, pp. 453–463, 2004.CrossRefGoogle Scholar
  25. 25.
    Qi Y, Cheng Y-T, Cagin T, Goddard III WA. “Friction anisotropy at Ni(100)/(100) interfaces: molecular dynamics studies”, Phys. Rev. B, vol. 66, art no. 085420, 2002.Google Scholar
  26. 26.
    Cha P-R, Srolovitz DJ, Vanderlick TK. “Molecular dynamics simulation of single asperity contact”, Acta Mater., vol. 52, pp. 3983–3996, 2004.CrossRefGoogle Scholar
  27. 27.
    Forrest SR. “The path to ubiquitous and low-cost organic electronic appliances on Plastic”, Nature, vol. 428, pp. 911–918, 2004.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Yan-Fei Gao
    • 1
  • Allan F. Bower
    • 1
  1. 1.Divsison of EngineeringBrown UniversityProvidenceUSA

Personalised recommendations