Finite Temperature Coupled Atomistic/Continuum Discrete Dislocation Dynamics Simulation of Nanoindentation

  • Behrouz Shiari
  • Ronald E. Miller


Simulations of nanoindentation in a hexagonal aluminum single crystal are performed using a finite temperature coupled atomistic/continuum discrete dislocation (CADD) method. The method captures, at the same time, the atomistic mechanisms and the long-range effects without the computational cost of full atomistic simulations. The effects of several process variables are investigated, including system temperature. We discuss the results and the deformation mechanisms that occur during a series of indentation simulations.

Key words

Multiscale modeling discrete dislocations nanoindentation finite temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Picu RC. “Atomistic-continuum simulation of nano-indentation in molybdenum”, J. of Computer-Aided Materials Design, 7, pp. 77–87, 2000.CrossRefGoogle Scholar
  2. 2.
    Kelchner CL, Plimpton S, Hamilton JC. “Dislocation nucleation and defect structure during surface indentation”, Phys. Rev. B, 58, pp. 11058–11088, 1998.CrossRefGoogle Scholar
  3. 3.
    Zimmerman JA, Kelchner CL, Klein PA, Hamilton JC, Foiles SM. “Surface step effects on nanoindention”, Phys. Rev. Lett., 87, pp. 165507, 2001.CrossRefGoogle Scholar
  4. 4.
    Fang TH, Weng CI, Chang JG. “Molecular dynamics analysis of temperature effects on nanoindentation measurement”, Mater. Sci. Eng., A357, pp. 7–12, 2003.Google Scholar
  5. 5.
    Van der Giessen E, Needleman A. “Discrete dislocation plasticity: a simple planar model”, Simul. Mater. Sci. Eng., 3, pp. 688–691, 1995.Google Scholar
  6. 6.
    Abraham FF, Broughton JQ, Bernstein N, Kaxiras E. “Spanning the length scales in dynamic simulation”, Comput. Phys., 12, pp. 538, 1998.CrossRefGoogle Scholar
  7. 7.
    Kohlhoff S, Gumbsch P, Fischmeister HF. “Crack propagation in bcc crystals studied with a combined finite-element and atomistic model”, Philos. Mag. A, 64, pp. 851–878, 1991.Google Scholar
  8. 8.
    Rudd RE, Broughton JQ. “Concurrent coupling of length scales in solid state systems”, Phys. Stat. Sol. B, 217, pp. 251–291, 2000.CrossRefGoogle Scholar
  9. 9.
    Miller RE, Ortiz M, Phillips R, Shenoy V, Tadmor EB. “Quasicontinuum models of fracture and plasticity”, Eng. Fract. Mech., 61, pp. 427–444, 1998.CrossRefGoogle Scholar
  10. 10.
    Curtin WA, Miller RE. “Atomistic/continuum coupling in computational materials science”, Modeling Simul. Mater. Sci. Eng., 11, pp. R33–R68, 2003.CrossRefGoogle Scholar
  11. 11.
    Shilkrot LE, Miller RE, Curtin WA. “Coupled atomistic and discrete dislocation plasticity”, Phys. Rev. Lett., 89, pp. 025501-1–0255501-4, 2002.CrossRefGoogle Scholar
  12. 12.
    Miller RE, Shilkrot LE, Curtin WA. “A Coupled atomistic and discrete dislocation plasticity simulation of nanoindentation into single crystal thin films”, Acta Materialia, 52, pp. 271–284, 2004.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Shilkrot LE, Miller RE, Curtin WA. “Multiscale plasticity modeling: Coupled atomistic and discrete dislocation mechanics”, J. Mech. Phys. Solids, 52, pp. 755–787, 2004.zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Van Vliet KJ, Suresh S. “Simulations of cyclic normal indentation of crystal surfaces using the bubble-raft model”, Philos. Mag. A, 82, pp. 1993–2001, 2002.CrossRefGoogle Scholar
  15. 15.
    Daw MS, Baskes MI. “Embedded-atom method: derivation and application to impurities, surface, and other defects in metals”, Phys. Rev. B, 29, pp. 6443–6453, 1984.CrossRefGoogle Scholar
  16. 16.
    Cleveringa HHM, Van der Giessen E, Needleman A. “A discrete dislocation analysis of bending”, Inter. J. of Plasticity, 15, pp. 837–868, 1999.zbMATHCrossRefGoogle Scholar
  17. 17.
    Cai W, Koning M, Bulatov V, Yip S. “Minimizing boundary reflections in coupled-domain simulations”, Phys. Rev. Lett., 85, pp. 3213–3216, 2000.CrossRefGoogle Scholar
  18. 18.
    E W, Huang Z. “Matching conditions in atomistic-continuum modeling of materials”, Phys. Rev. Lett., 87, pp. 135501, 2001.CrossRefGoogle Scholar
  19. 19.
    Dupuy L, Miller RE, Phillips R. “A finite temperature quasicontinuum”, Bulletin of APS March Meeting, Montreal, Quebec, Canada, March. 22–26, 2004, pp. 1420.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Behrouz Shiari
    • 1
  • Ronald E. Miller
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringCarleton UniversityOttawaCanada

Personalised recommendations