Skip to main content

Crystal Structure Refinement Using Chemical Shifts

  • Chapter

The NMR chemical shift is available from practically every conventional NMR experiment. In contrast to X-ray diffraction it is mainly caused by the density distribution of the valence electrons, hence it contains genuine information about the valence structure of the molecular system. High-resolution solid-state investigations on crystalline systems revealed a considerable dependence of the chemical shift on the 3D arrangement of the atoms and on their packing within the unit cell [1]. In many cases, an asymmetric content of the unit cell could be deduced from NMR line splittings. The point group symmetry of the molecule under study is frequently reflected within the NMR spectra and especially within the chemical shift tensors [2]. It was demonstrated by Taulelle [3] that even the complete space group could be deduced from NMR results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   869.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   1,099.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Sternberg, U., Witter, R., Ulrich, A.S. (2008). Crystal Structure Refinement Using Chemical Shifts. In: Webb, G.A. (eds) Modern Magnetic Resonance. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3910-7_8

Download citation

Publish with us

Policies and ethics