Skip to main content

Geochronology

In coastal research, the terms “geochronology” or “geochronostratigraphy are used to determine timescales for coastal processes and coastal evolution utilizing relative stratigraphic techniques (morpho-, pedo-, bio-, lithostratigraphy) and absolute dating methods. Relative and absolute temporal scales and dating methods complement each other.

In the 1980s and 1990s, applications of the absolute dating of coastal forms, sediments, and processes were improved, new dating methods were established, and the precision and accuracy of existing age determination methods were considerably increased. Numerous texts describe dating techniques in Quaternary sciences in detail (e.g., Smart and Frances, 1991; Wagner, 1998).

Conventional and mass spectrometric radiocarbon dating methods, as well as 230Thorium/234 Uranium isotope, and Electron Spin Resonance (ESR) age determination methods are the most commonly used absolute dating techniques in coastal research (Table G1). The...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Aitken, M.J., 1998. An Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-stimulated Luminescence. Oxford: Oxford University Press.

    Google Scholar 

  2. Bard, E., Hamelin, B., Fairbanks, R.G., and Zindler, A., 1990. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature, 345:405–410.

    Google Scholar 

  3. Bard, E., Fairbanks, R.G., and Hamelin, B., 1992. How accurate are the U-Th ages obtained by mass spectrometry on coral terraces. In Kukla, G.J. and Went, E. (eds.), Start of a Glacial. Berlin: Springer-Verlag, pp. 15–22.

    Google Scholar 

  4. Brückner, H., 1980. Marine Terrassen in Süditalien. Eine quartämorphologische Studie über das Küstentiefland von Metapont. Düsseldorfer Geographische Schriften, 14, Düsseldorf, Germany: Düsseldorf University.

    Google Scholar 

  5. Brückner, H., 1996. Studies of beach deposits in northern Spitsbergen. Heidelberger Geographische Arbeiten, 104: 375–389.

    Google Scholar 

  6. Brückner, H., 1997. Coastal changes in western Turkey-Rapid delta progradation in historical times. In Briand, F., and Maldonado, A. (eds.), Transformations and evolution of the Mediterranean coastline. CIESM Science Series, no. 3, 63–74 (Bulletin de l’Institut océanographique, numéro spécial 18. Musée océanographique, Monaco), Monaco.

    Google Scholar 

  7. Brückner, H., and Halfar, R.A., 1994. Evolution and age of shorelines along Woodfiord, northern Spitsbergen. Zeitschrift für Geomorphologie N.F., 97(Suppl.-Bd.): 75–91.

    Google Scholar 

  8. Kaufmann, A., Broecker, W.S., Ku, T.L., and Thurber, D.L., 1971. The status of U-series methods of mollusc dating. Geochimica et Cosmochimica Acta, 35: 1155–1183.

    Google Scholar 

  9. Langereis, C.G., Dekkers, M.J., de Lange, G.J. Paterne, M., and van Stantvoort, P.J.M., 1997. Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes. Geophysical Journal International, 129, 75–94.

    Google Scholar 

  10. Miller, G.H., and Brigham-Grette, J., 1989. Amino acid geochronology: Resolution and precision in carbonate fossils. Quaternary International, 1: 111–128.

    Google Scholar 

  11. Pirazzoli, P., Radtke, U., Hantoro, W.S., Jouannic, C., Hoang, C.T., Causse, C., and Borel-Best, M., 1991. Quaternary raised coral-reef terraces on Sumba island, Indonesia. Science, 252: 1834–1836.

    Google Scholar 

  12. Prescott, J.R., and Robertson, G.B., 1997. Sediment dating by luminescence: a review. Radiation Measurements, 27(5/6): 893–922.

    Google Scholar 

  13. Radtke, U., 1989. Marine Terrassen und Korallenriffe. Das Problem der quartäen Meeresspiegelschwankungen erlätert an Fallstudien aus Chile, Argentinien und Barbados. Düsseldorfer Geographische Schriften, 27, Düsseldorf, Germany: Düsseldorf University.

    Google Scholar 

  14. Radtke, U., and Grün, R., 1988. ESR dating of corals. Quaternary Science Reviews, 7: 465–470.

    Google Scholar 

  15. Rink, W.J., 1997. Electron Spin Resonance (ESR) dating and ESR applications in Quaternary science and archaeometry. Radiation Measurements, 27: 975–1025.

    Google Scholar 

  16. Schellmann, G., 1998. Jungkänozoische Landschaftsgeschichte Patagoniens (Argentinien). Andine Vorlandvergletscherungen, Talent-wicklung und marine Terrassen. Essener Geographische Arbeiten, 29: 216.

    Google Scholar 

  17. Schellmann, G., and Kelletat, D., 2001. Chronostratigraphische Untersuchungen litoraler und äolischer Formen und Ablagerungen an der Südküste von Zypern mittels ESR-Altersbestimmungen an Mollusken-und Landschneckenschalen. Essener Geographische Arbeiten, 32: 75–98.

    Google Scholar 

  18. Schellmann, G., and Radtke, U., 1997. Electron Spin Resonance (ESR) techniques applied to mollusc shells from South America (Chile, Argentina) and implications for the palaeo sea-level curve. Quaternary Science Reviews, 16: 465–475.

    Google Scholar 

  19. Schellmann, G., and Radtke, U., 1999. Problems encountered in the determination of dose and dose rate in ESR dating of mollusc shells. Quaternary Science Reviews, 18: 1515–1527.

    Google Scholar 

  20. Schellmann, G., and Radtke, U., 2000. ESR dating stratigraphically well-constrained marine terraces along the Patagonian Atlantic coast (Argentina). Quaternary International, 68-71: 261–273.

    Google Scholar 

  21. Schellmann, G., and Radtke, U., 2001a. Progress in ESR dating of Pleistocene corals—an approach for DE determination. Quaternary Science Reviews, 20: 1015–1020.

    Google Scholar 

  22. Schellmann G., and Radtke U., 2001b. Neue Ergebnisse zur Verbreitung und Altersstellung gehobener Korallenriffterrassen im Süden von Barbados. In Schellmann, Gerhard (ed.) Von der Nordessküste bis Neuseeland-Beiträge zur 19. Jahrestagung des Arbeitskreises “Geographie der Meere und Küsten” vom 24–27. Bamberg: Bamberger Geographische Schriften, 20: 201–224.

    Google Scholar 

  23. Smart, P.L., and Frances P.D., (eds.), 1991. Quaternary dating methods: a user’s guide. Cambridge; Quaternary Research Association, Technical Guide No.4, p. 233.

    Google Scholar 

  24. Thompson, R., 1991. Palaeomagnetic dating. In Smart, P.L., and Frances, P.D. (eds.), Quaternary dating methods: a user’s guide. Technical Guide No. 4. Cambridge; Quaternary Research Association, pp. 177–198.

    Google Scholar 

  25. Wagner, G.A., 1998. Age Determination of Young Rocks and Artifacts—Physical and Chemical Clocks in Quaternary Geology and Archaeology. New York: Springer.

    Google Scholar 

  26. Wintle, A.G., 1997. Luminescence dating: laboratory procedures and protocols. Radiation Measurements, 27(5/6): 769–817.

    Google Scholar 

  27. Worm, H.-U., 1997. A link between geomagnetic reversals and events and glaciations. Earth Planet. Science Letters, 147: 55–67.

    Google Scholar 

  28. Bomford, G., 1980. Geodesy, 4th edn. Oxford, England: Clarendon Press.

    Google Scholar 

  29. Bugayevskiy, L.M., and Snyder, J.P., 1995. Map Projections: A Reference Manual. London; Bristol, PA: Taylor & Francis.

    Google Scholar 

  30. Heiskanen, W.A., and Moritz, H., 1967. Physical Geodesy. San Francisco: Freeman and Company.

    Google Scholar 

  31. Lambeck, K., 1988. Geophysical Geodesy: The Slow Deformation of the Earth. Oxford, England: Clarendon Press.

    Google Scholar 

  32. NIMA WGS84 Update Committee, 1997. Department of Defense World Geodetic System 1984, Its Definition and Relationships with Local Geodetic Systems, 3rd edn. National Imagery and Mapping Agency: TR 8350.2.

    Google Scholar 

  33. Seeber, G., 1993. Satellite Geodesy. Berlin; New York: de Gruyter.

    Google Scholar 

  34. Torge, W., 1991. Geodesy. Berlin; New York: de Gruyter.

    Google Scholar 

  35. Bartlett, D.J., 2000.Working on the Frontiers of Science: Applying GIS to the Coastal Zone. In Wright, D.J., and Bartlett, D.J., (eds.), Marine and Coastal Geographic Information Systems. London: Taylor and Francis, pp. 11–22.

    Google Scholar 

  36. Bernhardsen, T., 1992. Geographic Information Systems. Arendal: Viak IT.

    Google Scholar 

  37. Daniels, R.C. et al., 1998. Coastline mapping and identification of erosion hazard areas in Pacific county, Washington. In Proceedings of the Environmental Systems Research Institute (ESRI) User Conference’ 98.

    Google Scholar 

  38. DeMers, M.N., 1997. Fundamentals of Geographic Information Systems. New York: John Wiley & Sons.

    Google Scholar 

  39. Fell, B. et al., 1997. Coastal Management: A bibliography of Geographic Information System Applications. Charleston, WV: NOAA Coastal Services Center.

    Google Scholar 

  40. Foresman, T.W. (ed.), 1998. The History of Geographic Information Systems: Perspectives from the Pioneers. Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  41. Goodchild, M.F., 1992. Geographical Data Modeling. Computers and Geosciences, 18(4): 401–408.

    Google Scholar 

  42. McHarg, I., 1969. Design with Nature. Garden City, NY: Doubleday & Company.

    Google Scholar 

  43. Neves, J.N. et al., 1999. A virtual GIS room: interfacing spatial information in virtual environments. In Camara, A.S., and Raper, J. (eds.), Spatial Multimedia and Virtual Reality. London: Taylor and Francis.

    Google Scholar 

  44. Star, J. and Estes, J.E., 1990. Geographic Information Systems: An Introduction. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  45. Wright, D.J., and Bartlett, D.J. (eds.), 2000. Marine and Coastal Geographic Information Systems. London: Taylor and Francis.

    Google Scholar 

  46. Büdel, J., 1977. Klimageomorphologie. Stuttgart: Springer.

    Google Scholar 

  47. Davies, J.L., 1964. A morphogenic approach to world’s shorelines. Zeitschrift für Geomorphologie, N.F., 8: 127–142.

    Google Scholar 

  48. Davies, J.L., 1972. Geographical Variation in Coastal Development. Geomorphology Texts, 4; Edinburgh: Oliver and Boyd.

    Google Scholar 

  49. Davies, J.L., 1977. Geographical Variation in Coastal Development, 2nd edn, Geomorphology Texts, 4, Edinburgh, London: Longman.

    Google Scholar 

  50. Kelletat, D.H., 1988. Coastal zones of Australia and New Zealand, compared with those of the Northern Hemisphere. In 26th Congress International Geographical Union, Abstracts, I, p. 293, Sydney.

    Google Scholar 

  51. Kelletat, D.H., 1989. The question of “Zonality” in Coastal Geomorphology. With tentative application along the East Coast of the USA. Journal of Coastal Research, 5(2): 329–344.

    Google Scholar 

  52. Kelletat, D.H., 1995. Atlas of Coastal Geomorphology and Zonality. Journal of Coastal Research, Special Issue, 13, Fort Lauderdale: Coastal Education Research Foundation.

    Google Scholar 

  53. Kelletat, D.H., and Seehof, G., 1986. Über die zonale Anordnung der gegenwätigen Küstenformungsprozesse im Osten Australiens. Berliner Geographische Studien, 18: 41–77.

    Google Scholar 

  54. Murphy, R.E., 1968. Landforms of the world. Annals Association of American Geographers, 58, Map Suppl. 9.

    Google Scholar 

  55. Valentin, H., 1979: Ein System der zonalen Küstenmorphologie. Zeitschrift für Geomorphologie, N.F., 23: 113–131.

    Google Scholar 

  56. Coastal Engineering (See Shore Protection Structures and Navigation Structures)

    Google Scholar 

  57. Computer Simulation Models (See Coastal Modeling and Simulation)

    Google Scholar 

  58. Engineering Applications of Coastal Geomorphology

    Google Scholar 

  59. Instrumentation (See Beach and Nearshore Instrumentation)

    Google Scholar 

  60. Numerical Modeling

    Google Scholar 

  61. Physical Models

    Google Scholar 

  62. Sediment Transport (See Cross-Shore Sediment Transport and Longshore Sediment Transport)

    Google Scholar 

  63. Surf Modeling

    Google Scholar 

  64. Wave Climate

    Google Scholar 

  65. Waves

    Google Scholar 

  66. ASTM, 2000. Standard Method for Testing Soils and Rocks. Philadelphia: American Society for Testing and Materials.

    Google Scholar 

  67. Barrett, R.J., 1966. Use of plastic filters in coastal structures. Proceedings of the 16th International Conference On Coastal Engineering. New York: American Society of Civil Engineers, pp. 1048–1067.

    Google Scholar 

  68. Brunn, P., 2000. Port Engineering. Houston: Gulf Publishing.

    Google Scholar 

  69. Heerten, G., and Kohlhase, S., 2000. Geotextiles in Coastal and Harbor Engineering. In Bruun, P. (ed). Port Engineering. Houston: Gulf Publishing, pp. 512–530.

    Google Scholar 

  70. Koerner, R., 1998. Designing with Geosynthetics. Upper Saddle River: Prentice Hall.

    Google Scholar 

  71. Andersen, B.G., and Borns, H.W., Jr., 1994. The Ice Age World. Oslo: Scandinavian University Press.

    Google Scholar 

  72. Anderson, J.B., Brake, C., Domack, E., Myers, N., and Wright, R., 1983. Development of a polar glacial-marine sedimentation model from Antarctic Quaternary deposits and glaciological information. In Molnia, B.F. (ed.), Glacial-Marine Sedimentation. New York: Plenum Press, pp. 233–264.

    Google Scholar 

  73. Ashley, G.M., Boothroyd, J.C., and Borns, H.W., Jr., 1991. Sedimentology of late Pleistocene (Laurentide) deglacial-phase deposits, eastern Maine; an example of a temperate marine grounded ice-sheet margin. In Anderson, J.B., and Ashley, G.M. (eds.), Glacial Marine Sedimentation: Paleoclimatic Significance. Boulder, Colorado: Geological Society of America Special Paper 261, pp. 107–125.

    Google Scholar 

  74. Bacchus, T.S., and Belknap, D.F., 1997. Glacigenic features and shelf basin stratigraphy of the eastern Gulf of Maine. In Davis T.A., Bell, T., Cooper, A.K., Josenhans, H., Polyak, L., Solheim, A., Stoker, M.S., and Stravers, J.A. (eds.), Glaciated Continental Margins: An Atlas of Acoustic Images. New York: Chapman-Hall Pub. Co., pp. 213–216.

    Google Scholar 

  75. Belknap, D.F., and Shipp, R.C., 1991. Seismic stratigraphy of glacialmarine units, Maine inner shelf: In Anderson, J.B., and Ashley, G.M. (eds.), Glacial-Marine Sedimentation; Paleoclimatic Significance. Boulder, Colorado: Geological Society of America Special Paper 261, pp. 137–157.

    Google Scholar 

  76. Berger, A.L., 1988. Milankovitch theory and climate. Reviews of Geophysics, 26: 624–657.

    Google Scholar 

  77. Boulton, G.S., Baldwin, C.T., Peacock, J.D., McCabe, A.M., Miller, G., Jarvis, J., Horsefield, B., Worsley, P., Eyles, N., Chroston, P.N., Day, T.E., Gibbard, P., Hare, P.E., and von Brunn, V., 1982. A glacioisostatic facies model and amino acid stratigraphy for late Quaternary events in Spitsbergen and the Arctic. Nature, 298: 437–441.

    Google Scholar 

  78. Boyd, R., Bowen, A.J., and Hall, R.K., 1987. An evolutionary model for transgressive sedimentation on the eastern shore of Nova Scotia. In FitzGerald, D.M., and Rosen, P.S. (eds.), Glaciated Coasts. San Diego, CA: Academic Press, pp. 87–114.

    Google Scholar 

  79. Broecker, W.S., 1997. Thermohaline circulation, the Achilles heel of our climate system: will man-made CO2 upset the current balance? Science, 278: 1582–1588.

    Google Scholar 

  80. Broecker, W.S., Thurber, D.L., Goddard, J., Ku, T.L., Matthews, R.K., and Mesolella, K.J., 1968. Milankovitch hypothesis supported by precise dating of coral reefs and deep-sea sediments. Science, 159: 297–300.

    Google Scholar 

  81. Clark, P.U., Marshall, S.J., Clarke, G.H.C., Hostetler, S.W., Licciardi, J.M., and Teller, J.T., 2001. Freshwater forcing of abrupt climate change during the last glaciation. Science, 293: 283–287.

    Google Scholar 

  82. Denton, G.H., and Hall, B.L. (eds.), 2000. Glacial and paleoclimatic history of the Ross ice drainage system of Antarctica. Geografiska Annaler. Series A: Physical Geography, 82:(2–3), p. 293

    Google Scholar 

  83. Denton, G.H., and Hendy, C.H., 1994. Younger Dryas age advance of Franz Josef Glacier in the Southern Alps of New Zealand. Science, 264: 1434–1437.

    Google Scholar 

  84. Denton, G.H., and Hughes, T.J., (eds.), 1981. The Last Great Ice Sheets. New York: John Wiley and Sons.

    Google Scholar 

  85. Fairbridge, R.W., and Hillaire-Marcel, C., 1977. An 8,000-year paleoclimatic record of the ‘Double-Hale’ 45-yr solar cycle. Nature, 268: 413–416.

    Google Scholar 

  86. Fisher, J.J., 1987. Shoreline development of the glacial Cape Cod coastline. In FitzGerald, D.M., and Rosen, P.S. (eds.), Glaciated Coasts. San Diego, CA: Academic Press, pp. 279–305.

    Google Scholar 

  87. FitzGerald, D.M., and van Heteren, S., 1999. Classification of paraglacial barrier systems: coastal New England, USA. Sedimentology, 46: 1083–1108.

    Google Scholar 

  88. Forbes, D.L., Taylor, R.B., Orford, J.D., Carter, R.W.G., and Shaw, J., 1991. Gravel-barrier migration and overstepping. Marine Geology, 97: 305–313.

    Google Scholar 

  89. Forbes, D.L., Orford, J.D., Carter, R.W.G., Shaw, J., and Jennings, S.C., 1995. Morphodynamic evolution, self-organisation, and instability of coarse-clastic barriers on paraglacial coasts. Marine Geology, 126: 63–85.

    Google Scholar 

  90. Jacobs, S.S., 1989. Marine controls on modern sedimentation on the Antarctic continental shelf. Marine Geology, 85: 121–153.

    Google Scholar 

  91. Johnson, D.W., 1919. Shore Processes and Shoreline Development. Facsimile edn. 1972, New York, Hafner Pub. Co., p. 584.

    Google Scholar 

  92. Kelley, J.T., Belknap, D.F., FitzGerald, D.M., and Boothroyd, J.C., 2001. Quaternary sea-level change and coastal evolution in eastern Maine. In West, D.P., Jr., and Bailey, R.H. (eds.), Guidebook for Geologic Field Trips in New England 2001. Boston, MA: Annual Meeting of the Geological Society of America, pp. A1–A31.

    Google Scholar 

  93. Kellogg, T.B., and Kellogg, D.E., 1988. Antarctic cryogenic sediments: biotic and inorganic facies of ice shelf and marine-based ice sheet environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 67: 51–74.

    Google Scholar 

  94. Leatherman, S.P., 1987. Reworking of glacial outwash sediments along outer Cape Cod: development of Provincetown Spit. In FitzGerald, D.M., and Rosen, P.S. (eds.), Glaciated Coasts. San Diego, CA: Academic Press, pp. 307–325.

    Google Scholar 

  95. Liverman, D.G.E., 1994. Relative sea-level history and isostatic rebound in Newfoundland, Canada. Boreas, 23: 217–230.

    Google Scholar 

  96. MacAyeal, D.R., 1993. Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic’s Heinrich Events. Paleoceanography, 8: 775–784.

    Google Scholar 

  97. McCann, S.B., and Kostaschuk, R.A., 1987. Fjord sedimentation in northern British Columbia. In FitzGerald, D.M., and Rosen, P.S. (eds.), Glaciated Coasts. San Diego, CA: Academic Press, pp. 33–49.

    Google Scholar 

  98. Molnia, B.F., 1980. Twentieth-century history of the Gulf of Alaska coastline Cape Suckling to Cape Spencer. In Field, M.E., Bouma, A.H., Colburh, I.P., Douglas, R.G., and Ingle, J.C. (eds.), Quaternary Depositional Environments of the Pacific Coast. Pacific Coast Paleogeography Symposium 4, Pacific Section, Society of Economic Paleontologists and Mineralogists, Los Angeles, pp. 121–141.

    Google Scholar 

  99. Moreno, P.I., Jacobson, G.L., Jr., Lowell, T.V., and Denton, G.H., 2001. Interhemispheric climate links revealed by a late-glacial cooling episode in southern Chile. Nature, 409: 804–808.

    Google Scholar 

  100. Nummedal, D., Hine, A.C., and Boothroyd, J.C., 1987. Holocene evolution of the south-central coast of Iceland. In FitzGerald, D.M., and Rosen, P.S. (eds.), Glaciated Coasts. San Diego, CA: Academic Press, pp. 115–150.

    Google Scholar 

  101. Oldale, R.N., 1992. Cape Cod and the Islands: the Geologic Story. East Orleans, MA: Parnassus Imprints.

    Google Scholar 

  102. Pfirman, S.L., and Solheim, A., 1989. Subglacial meltwater discharge in the open-marine tidewater glacier environment: observations from Nordaustlandet, Svalbard Archipelago. Marine Geology, 86: 265–281.

    Google Scholar 

  103. Piper, D.J.W., Letson, J.R.J., DeIure, A.M., and Barrie, C.Q., 1983. Sediment accumulation in low-sedimentation, wave-dominated, glaciated inlets. Sedimentary Geology, 36: 195–215.

    Google Scholar 

  104. Prior, D.B., Wiseman, W.J., and Bryant, W.R., 1981. Submarine chutes on the slopes of fjord deltas. Nature, 290: 326–328.

    Google Scholar 

  105. Powell, R.D., 1983. Glacial-marine sedimentation processes and lithofacies of temperate tidewater glaciers, Glacier Bay, Alaska. In Molnia, B.F. (ed.), Glacial-Marine Sedimentation. New York: Plenum Press, pp. 185–232.

    Google Scholar 

  106. Powell, R.D., 1984, Glacimarine processes and inductive lithofacies modelling of ice shelf and tidewater glacier sediments based on Quaternary examples. Marine Geology, 57: 1–52.

    Google Scholar 

  107. Schnitker, D., Belknap, D.F., Bacchus, T.S., Friez, J.K., Lusardi, B.A., and Popek, D.M., 2001, Deglaciation of the Gulf of Maine. In Weddle, T.K., and Retelle, M.J. (eds.), Deglacial History and Relative Sea-Level Changes, Northern New England and Adjacent Canada. Boulder, Colorado: Geological Society of America Paper 351, p. 9–34.

    Google Scholar 

  108. Thompson, W.B., 1982. Recession of the late Wisconsinan ice sheet in coastal Maine. In Larson, G.J., and Stone, B.D. (eds.), Late Wisconsinan Glaciation of New England. Dubuque, Iowa: Kendall/Hunt Pub. Co., pp. 211–228.

    Google Scholar 

  109. Clinton, W. President of the United States, 2000. Improving the Civilian Global Positioning System (GPS). Washington DC: The White House

    Google Scholar 

  110. GPS World., Sept. 2000. Satellite Update.

    Google Scholar 

  111. Hurn, J., 1989. GPS: A Guide to the Next Utility. Sunnydale, CA: Trimble Navigation Ltd.

    Google Scholar 

  112. Leick, A., 1994. GPS Satellite Surveying. New York: John Wiley & Sons Inc.

    Google Scholar 

  113. Steede-Terry, K., 2000. Integrating GIS and the Global Positioning System. Redlands, CA: ESRI Press.

    Google Scholar 

  114. Baarse, G., 1995. Development of an Operational Tool for Global Vulnerability Assessment (GVA): Update of the Number of People at Risk due to Sea-level Rise and Increased Flood Probabilities. The Hague, The Netherlands: Ministry of Transport, Public Works and Water Management, CZM-Centre Publication No. 3, p. 15

    Google Scholar 

  115. Bijlsma, L., Ehler, C.N., Klein, R.J.T., Kulshrestha, S.M., McLean, R.F., Mimura, N., Nicholls, R.J., Nurse, L.A., Perez Nieto, H., Stakhiv, E.Z., Turner, R.K., and Warrick, R.A., 1996. Coastal zones and small islands. In Watson, R.T., Zinyowera, M.C., and Moss, R.H. (eds.), Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses. Cambridge: Cambridge University Press, pp. 289–324.

    Google Scholar 

  116. Holligan, P., and de Boois, H. (eds.) 1993. Land-Ocean Interactions in the Coastal Zone: Science Plan. Stockholm: International Geosphere-Biosphere Programme, IGBP Report No. 25.

    Google Scholar 

  117. Hoozemans, F.M.J., and Hulsbergen, C.H., 1995. Sea-level rise: a worldwide assessment of risk and protection costs. In Eisma, D. (ed.), Climate Change: Impact on Coastal Habitation, London: Lewis Publishers, pp. 137–163.

    Google Scholar 

  118. Hoozemans, F.M.J., Marchand, M., Pennekamp, H.A., Stive, M., Misdorp, R., and Bijlsma, L., 1992. The impacts of sea-level rise on coastal areas: Some global results. In Proceedings “The Rising Challenge of the Sea,” Margarita Island, Venezuela, March 9–13 1992. NOAA, Silver Spring, Md. pp. 275–292.

    Google Scholar 

  119. Hoozemans, F.M.J., Marchand, M., and Pennekamp, H.A., 1993. A Global Vulnerability Analysis: Vulnerability Assessment for Population, Coastal Wetlands and Rice Production on a Global Scale, 2nd edn. the Netherlands: Delft Hydraulics.

    Google Scholar 

  120. IPCC CZMS, 1992. Global Climate Change and the Rising Challenge of the Sea. Report of the Coastal Zone Management Subgroup. IPCC Response Strategies Working Group, the Hague: Rijkswaterstaat.

    Google Scholar 

  121. Klein, R.J.T., and Nicholls, R.J., 1999. Assessment of coastal vulnerability to sea-level rise, Ambio, 28: 182–187.

    Google Scholar 

  122. Nicholls, R.J., 1995. Synthesis of vulnerability analysis studies. Proceedings of WORLD COAST 1993, Ministry of Transport, Public Works and Water Management, the Netherlands pp. 181–216.

    Google Scholar 

  123. Nicholls, R.J., 2000. An analysis of the flood implications of the IPCC Second Assessment global sea-level rise scenarios. In Parker, D.J. (ed.), Floods. London: Routledge, pp. 148–162.

    Google Scholar 

  124. Nicholls, R.J., and Mimura, N., 1998. Regional issues raised by sea-level rise and their policy implications. Climate Research, 11: 5–18.

    Google Scholar 

  125. Nicholls, R.J., Mimura, N., and Topping, J., 1995. Climate change in South and Southeast Asia: Some implications for coastal areas. Journal of Global Environment Engineering, 1: 137–154.

    Google Scholar 

  126. Nicholls, R.J., Hoozemans, F.M.J., and Marchand, M., 1999. Increasing flood risk and wetland losses due to global sea-level rise: Regional and global analyses. Global Environmental Change, 9: S69–S87.

    Google Scholar 

  127. Parry, M., and Livermore, M. (eds.), 1999. A new assessment of the global effects of climate change. Global Environmental Change, 9: S1–S107.

    Google Scholar 

  128. Valentin, H., 1954. Die Kusten der Erde, Berlin: VEB Geographisch-Kartographische Anstalt Gotha.

    Google Scholar 

  129. WCC’93, 1994. Preparing to Meet the Coastal Challenges of the 21st Century. World Coast Conference Report, Noordwijk, Nov. 1993, The Hague: Rijkswaterstaat.

    Google Scholar 

  130. Carter, R.W.G., and Orford, J.D., 1993. The morphodynamics of coarse clastic beaches and barriers: a short and long-term perspective. Journal of Coastal Research, 15(Special issue): 158–179.

    Google Scholar 

  131. Forbes, D.L., Orford, J.D., Carter, R.W.G., Shaw, J., and Jennings, S.C., 1995. Morphodynamic evolution, self-organisation, and instability of coarse-clastic barriers on paraglacial coasts. Marine Geology, 126: 63–85.

    Google Scholar 

  132. Forbes, D.L., Taylor, R.B., Orford, J.D., Carter, R.W.G., and Shaw, J., 1991. Gravel barrier migration and overstepping. Marine Geology, 97: 305–313.

    Google Scholar 

  133. Jennings, S.C., Orford, J.D., Canti, M., Devoy, R.J.N., and Straker, V. 1998. The role of relative sea-level rise and changing sediment supply on Holocene gravel barrier development; the example of Porlock, Somerset, UK. The Holocene, 8: 165–181.

    Google Scholar 

  134. Kirk, R.M., 1980. Mixed sand and gravel beaches: morphology, processes and sediments. Progress in Physical Geography, 4: 189–210.

    Google Scholar 

  135. Orford, J.D., Carter, R.W.G., and Jennings, S.C., 1991. Coarse clastic barrier environments: evolution and implications for Quaternary sea-level interpretation. Quaternary International, 9: 87–104.

    Google Scholar 

  136. Orford, J.D., Carter, R.W.G., McKenna, J., and Jennings, S.C., 1995. The relationship between the rate of mesoscale sea-level rise and the retreat rate of swash-aligned gravel-dominated coastal barriers. Marine Geology, 124: 177–186.

    Google Scholar 

  137. Orford, J.D., Carter, R.W.G., and Jennings, S.C., 1996. Control domains and morphological phases in gravel-dominated coastal barriers. Journal of Coastal Research, 12: 589–605.

    Google Scholar 

  138. Bluck, Brian J. 1967. Sedimentation of beach gravels: examples from South Wales. Journal of Sedimentary Petrology, 37: 128–156.

    Google Scholar 

  139. Carter, R.W. 1988. Coastal Environments. London: Academic Press Limited.

    Google Scholar 

  140. Damgaard, J.S., Stripling, S., and Soulsby, R.L., 1996. Numerical Modelling of Coastal Shingle Transport. H R Wallingford Report TR 4.

    Google Scholar 

  141. Kiknadze, A.G., 1993. Scientific basis of regulation of coastal processes. In Ruben Kos’yan (ed.), Coastlines of the Black Sea. Proceedings of Coastal Zone’ 93, American Society of Civil Engineers, pp. 201–213.

    Google Scholar 

  142. King, C.A.M., 1972. Beaches and Coasts, 2nd Ed. London: Arnold.

    Google Scholar 

  143. Kirk, R.M., 1992. Experimental beach reconstruction—Renourishment on mixed sand and gravel beaches, Washdyke Lagoon, South Canterbury, New Zealand. Coastal Engineering, 17: 253–277.

    Google Scholar 

  144. Mason, T., Voulgaris, G., Simmonds, D.J., and Collins, M.B., 1997. Hydrodynamics and sediment transport on composite (Mixed Sand/Shingle) and sand beaches: a comparison. Proceedings, Coastal Dynamics’ 97 Conference, American Society of Civil Engineers, pp. 48–67.

    Google Scholar 

  145. Orford, J.D. 1975. Discrimination of particle size zonation on a pebble beach. Sedimentology, 22: 441–463.

    Google Scholar 

  146. Powell, K.A., 1988. The dynamic response of shingle beaches to random waves. Proceedings, International Conference on Coastal Engineering, American Society of Civil Engineers, pp. 1763–1773.

    Google Scholar 

  147. Quick, Michael C., and Patricia Dyksterhuis, 1994. Cross-shore transport for beaches of mixed sand and gravel. Proceedings, International Symposium: Waves—Physical and Numerical Modelling, Canadian Society Civil Engineers, pp. 1443–1452.

    Google Scholar 

  148. Simpson, D.P., 1995. Determination of exceedance frequencies of wave height and runup in Puget Sound. Proceedings, Puget Sound Research’ 95 Conference, Seattle, Washington.

    Google Scholar 

  149. Van der Meer, J.W., and Pilarczyk, K.W., 1986. Dynamic stability of rock slopes and gravel beaches. Proceedings, International Conference on Coastal Engineering, American Society of Civil Engineers, pp. 1713–1726.

    Google Scholar 

  150. Van Wellen, E., Chadwick, A.J., Bird, P.A.D., Bray, M., Lee, M., and Morfett, J., 1997. Coastal Sediment Transport on Shingle Beaches. Proceedings, Coastal Dynamics’ 97 Conference, American Society of Civil Engineers, pp. 38–47.

    Google Scholar 

  151. Zenkovich, V.P., and Schwartz, M.L., 1987. Protecting the Black Sea—Georgian S.S.R. gravel coast. Journal of Coastal Research, 3: 201–209.

    Google Scholar 

  152. Arrhenius, S., 1896. On the influence of carbonic acid in the air upon the temperature of the ground. Philosophical Magazine, 41: 237–276.

    Google Scholar 

  153. Environmental Protection Agency, 1995. The Probability of Sea Level Rise. Washington, DC: US Environmental Protection Agency.

    Google Scholar 

  154. Hayes, J.D., John Imbrie, and Shackleton, N.J., 1976. Variations in the earth’s orbit: pacemaker of the Ice Ages. Science, 194: 1121–1132.

    Google Scholar 

  155. IPCC (Intergovernmental Panel on Climate Change), 1996. Climate Change 1995: The Science of Climate Change. New York: Cambridge University Press.

    Google Scholar 

  156. IPCC (Intergovernmental Panel on Climate Change), 2000. Emissions Scenarios. New York: Cambridge University Press.

    Google Scholar 

  157. IPCC (Intergovernmental Panel on Climate Change). 2001. Climate Change 2001: The Scientific Basis. New York: Cambridge University Press.

    Google Scholar 

  158. Karl, T.R. et al., 1993. Recent variations of snow cover and snowfall in North America and their relation to precipitation and temperature variations. Journal of Climate 6: 1327–1344.

    Google Scholar 

  159. Karl, T.R., Knight, R.W., and Plummer, N., 1995. Trends in highfrequency climate variability in the twentieth century. Nature, 377: 217–220.

    Google Scholar 

  160. Kiehl, J.T., and Trenberth, K.E., 1997. Earth’s annual global mean energy budget. Bulletin of American Meteorological Society, 78: 197–208.

    Google Scholar 

  161. Mann, M.E., Bradley, R.S., and Hughes, M.K., 1999. Northern Hemisphere temperature during the past millenium. Inferences, uncertainties, and limitations. Geophysical Research Letters, 26: 759–762.

    Google Scholar 

  162. Milankovich, M., 1930, Mathematical climatology and astronomical theory of climate change. In Koppen, W., Geiger, R. (eds.), Handbuch der Klimatologie, Vol. 1. Berlin Gebruder Borntrager, pp. 1–176.

    Google Scholar 

  163. Rind, D. et al., 1990. Potential evapotranspiration and the likelihood of future droughts. Journal of Geophysical Research, 95: 9983–10005.

    Google Scholar 

  164. Vaughan, D., and Spouge, J., 2002. Risk estimation of collapse of the west antarctic ice sheet. Climatic Change, 52: 65–91.

    Google Scholar 

  165. Waggoner, P.E., and Revelle, R.R., 1990. Summary. In Waggoner, P.E. (ed.), Climate Change and U.S. Water Resources. New York: John Wiley & Sons.

    Google Scholar 

  166. Wigley, T.M.L., and Raper, S.C.B., 2001. Interpretations of high projections of global mean warming. Science, 293: 451–454.

    Google Scholar 

  167. Heezen, B.C., and Ewing, M., 1952. Turbidity currents and submarine slumps, and the 1929 Grand Banks Earthquake. American Journal of Science, 250: 849–878.

    Google Scholar 

  168. Seymour, R.J., and Higgins, A.L., 1978. Continuous estimation of longshore sand transport. In Coastal Zone’ 78, Proceedings of the Symposium on Technical, Environmental, Socioeconomic and Regulatory Aspects of Coastal Zone Management, American Society of Civil Engineers, 3, pp. 2308–2318.

    Google Scholar 

  169. Seymour, R.J., Domurat, G.W., and Pirie, D.M., 1981. A sediment trapping experiment at Santa Cruz, California. In Proceedings of the 17th Coastal Engineering Conference, American Society of Civil Engineers, 2, pp. 1416–1435.

    Google Scholar 

  170. Baker, P.L., 1991. Response of ground-penetrating radar to bounding surfaces and lithofacies variations in sand barrier sequences. Exploration Geophysics, 22: 19–22.

    Google Scholar 

  171. Beres, M., Green, A., and Huggenberger, P., 1995. Mapping the architecture of glaciofluvial sediments with three-dimensional georadar. Geology, 23: 1087–1090.

    Google Scholar 

  172. Beres, M., Huggenberger, P., Green, A., and Horstmeyer, H., 1999. Using two-and three-dimensional georadar methods to characterize glaciofluvial architecture. Sedimentary Geology, 129: 1–24.

    Google Scholar 

  173. Busby, J.P., and Merritt, J.W., 1999. Quaternary deformation mapping with ground penetrating radar. Journal of Applied Geophysics, 41(1): 75–91.

    Google Scholar 

  174. Buynevich, I.V., and FitzGerald, D.M., 2000. Styles of coastal progradation revealed in subsurface records of paraglacial barriers, New England, USA. ICS-2000 Conference Programs and Abstracts, Rotorua, New Zealand, p. 42.

    Google Scholar 

  175. Conyers, L.B., and Goodman, D., 1997. Ground-penetrating Radar: An Introduction to Archaeologists. Walnut Creek: AltaMira Press.

    Google Scholar 

  176. Davis, J.L., and Annan, A.P., 1989. Ground-penetrating radar for highresolution mapping of soil and rock stratigraphy. Geophysical Prospecting, 37: 531–551.

    Google Scholar 

  177. FitzGerald, D.M., Baldwin, C.T., Ibrahim, N.A., and Humphries, S.M., 1992. Sedimentologic and morphologic evolution of a beach-ridge barrier along an indented coast: Buzzards Bay, Massachusetts. In Fletcher, C., and Wehmiller, J. (eds.), Quaternary Coasts of the United States: Marine and Lacustrine Systems, SEPM Special Publication No. 48, pp. 64–75.

    Google Scholar 

  178. FitzGerald, D.M., Buynevich, I.V., and Rosen, P.S., 2000. Historical and geological evidence of former tidal inlets along a retrograding barrier: Duxbury Beach, Massachusetts, USA. ICS-2000 Conference Programs and Abstracts, Rotorua, New Zealand, pp. 52.

    Google Scholar 

  179. Harari, Z., 1996. Ground-penetrating radar (GPR) for imaging stratigraphic features and groundwater in sand dunes. Journal of Applied Geophysics, 36(1): 43–52.

    Google Scholar 

  180. Jol, H.M., 1995. Ground penetrating radar antennae frequencies and transmitter powers compared for penetration depth, resolution and reflection continuity. Geophysical Prospecting, 43: 693–709.

    Google Scholar 

  181. Jol, H.M., and Smith, D.G., 1991. Ground penetrating radar of northern lacustrine deltas. Canadian Journal of Earth Sciences, 28: 1939–1947.

    Google Scholar 

  182. Jol, H.M., Young, R., Fisher, T.G., Smith, D.G., and Meyers, R.A., 1996a. Ground penetrating radar of eskers, kame terraces, and moraines: Alberta and Saskatchewan, Canada. Proceedings of the 6th International Conference on Ground Penetrating Radar (GPR’96), Sendai, Japan, pp. 439–443.

    Google Scholar 

  183. Jol, H.M., Smith, D.G., and Meyers, R.A., 1996b. Digital ground penetrating radar (GPR): an improved and very effective geophysical tool for studying modern coastal barriers (examples for the Atlantic, Gulf and Pacific coasts, U.S.A.). Journal of Coastal Research, 12: 960–968.

    Google Scholar 

  184. Jol, H.M., Vanderburgh, S., and Havholm, K.G, 1998. GPR studies of coastal aeolian (foredune and crescentic) environments: examples from Oregon and North Carolina, U.S.A. Proceedings of the 7th International Conference on Ground Penetrating Radar (GPR’98), Lawrence, Kansas, pp. 681–686.

    Google Scholar 

  185. Leclerc, R.F., and Hickin, E.J., 1997. The internal structure of scrolled floodplain deposits based on ground-penetrating radar, North Thompson River, British Columbia. Geomorphology, 21(1): 17–38.

    Google Scholar 

  186. Roberts, M.C., Bravard, J.P., and Jol, H.M. 1997. Radar signatures and structure of an avulsed channel: Rhone River, Aoste, France. Journal of Quaternary Science, 12: 35–42.

    Google Scholar 

  187. Schenk, C.J., Gautier, D.L., Olhoeft, G.R., and Lucius, J.E., 1993. Internal structure of an aeolian dune using ground-penetrating radar. In Pye, K., and Lancaster, N. (eds.), Aeolian Sediments: Ancient and Modern, IAS Special Publication No. 16, pp. 61–69.

    Google Scholar 

  188. Smith, D.G., and Jol, H.M., 1995. Ground penetrating radar: antenna frequencies and maximum probable depths of penetration in quaternary sediments. Journal of Applied Geophysics, 33: 93–100.

    Google Scholar 

  189. Smith, D.G., and Jol, H.M., 1997. Radar structure of a Gilbert-type delta, Peyto Lake, Banff National Park, Canada. Sedimentary Geology, 113: 195–209.

    Google Scholar 

  190. Smith, D.G., Meyers, R.A., and Jol, H.M., 1999. Sedimentology of an upper-mesotidal (3.7 m) Holocene barrier, Willapa Bay, SW Washington, U.S.A. Journal of Sedimentary Research, 69: 1290–1296.

    Google Scholar 

  191. Tanner,W.F., 1995. Origin of beach ridges and swales. Marine Geology, 129: 149–161.

    Google Scholar 

  192. Topp, G.C., Davis, J.L., and Annan, A.P., 1980. Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resourses Research, 16: 574–582.

    Google Scholar 

  193. Van Dam, R.L., and Schlager, W., 2000. Identifying causes of groundpenetrating radar reflections using time-domain reflectometry and sedimentological analyses. Sedimentology, 47: 435–449.

    Google Scholar 

  194. van Heteren, S., FitzGerald, D.M., Barber, D.C., Kelley, J.T., and Belknap, D.F., 1996. Volumetric analysis of a New England barrier system using ground-penetrating radar and coring techniques. Journal of Geology, 104: 471–483.

    Google Scholar 

  195. van Heteren, S., FitzGerald, D.M., McKinlay, P.A., and Buynevich, I.V., 1998. Radar facies of paraglacial barrier systems: coastal New England, USA. Sedimentology, 45: 181–200.

    Google Scholar 

  196. von Hippel, A.R., 1954. Dielectrics and Waves. Cambridge: MIT Press.

    Google Scholar 

Cross-references

  1. Coral Reefs, Emerged

    Google Scholar 

  2. Isostasy

    Google Scholar 

  3. Sea-Level Indicators, Geomorphic

    Google Scholar 

  4. Uplift Coasts

    Google Scholar 

Cross-references

  1. Altimeter Surveys, Coastal Tides and Shelf Circulation

    Google Scholar 

  2. Geographic Information Systems

    Google Scholar 

  3. Global Positioning Systems

    Google Scholar 

  4. Photogrammetry

    Google Scholar 

  5. Remote Sensing: Wetlands Classification

    Google Scholar 

  6. Sea-Level Datums (See Tidal Datums)

    Google Scholar 

  7. Tide gauges

    Google Scholar 

Cross-references

  1. Airborne Laser Terrain Mapping and Light Detection and Ranging

    Google Scholar 

  2. Erosion: Historical Analysis and Forecasting

    Google Scholar 

  3. Global Positioning Systems

    Google Scholar 

  4. Instrumentation (See Beach and Nearshore Instrumentation)

    Google Scholar 

  5. Mapping Shores and Coastal Terrain

    Google Scholar 

  6. Monitoring, Coastal Geomorphology

    Google Scholar 

  7. Nearshore Geomorphological Mapping

    Google Scholar 

  8. Photogrammetry

    Google Scholar 

  9. RADARSAT-2

    Google Scholar 

  10. Remote Sensing of Coastal Environments

    Google Scholar 

  11. Synthetic Aperture Radar Systems

    Google Scholar 

Cross-references

  1. Beachrock

    Google Scholar 

  2. Changing Sea Levels

    Google Scholar 

  3. Classification of Coasts (see Holocene Coastal Geomorphology)

    Google Scholar 

  4. Coral Reefs

    Google Scholar 

  5. Glaciated Coasts

    Google Scholar 

  6. Holocene Coastal Geomorphology

    Google Scholar 

  7. Ice-Bordered Coasts

    Google Scholar 

  8. Mangroves, Geomorphology

    Google Scholar 

  9. Weathering in the Coastal Zone

    Google Scholar 

Cross-references

  1. Bioengineered Shore Protection

    Google Scholar 

  2. Capping of Contaminated Coastal Areas

    Google Scholar 

  3. History, Coastal Geomorphology

    Google Scholar 

  4. Navigation Structures

    Google Scholar 

  5. Shore Protection Structures

    Google Scholar 

Cross-references

  1. Boulder Barricades

    Google Scholar 

  2. Changing Sea Levels

    Google Scholar 

  3. Climate Patterns in the Coastal Zone

    Google Scholar 

  4. Gravel Barriers

    Google Scholar 

  5. Ice-Bordered Coasts

    Google Scholar 

  6. Paraglacial Coasts

    Google Scholar 

Cross-references

  1. Airborne Laser Terrain Mapping and Light Detection and Ranging

    Google Scholar 

  2. Erosion: Historical Analysis and Forecasting

    Google Scholar 

  3. Geographic Information Systems

    Google Scholar 

  4. Instrumentation (See Beach and Nearshore Instrumentation)

    Google Scholar 

  5. Mapping Shores and Coastal Terrain

    Google Scholar 

  6. Monitoring, Coastal Geomorphology

    Google Scholar 

  7. Nearshore Geomorphological Mapping

    Google Scholar 

  8. Photogrammetry

    Google Scholar 

  9. RADARSAT-2

    Google Scholar 

  10. Remote Sensing of Coastal Environments

    Google Scholar 

  11. Synthetic Aperture Radar Systems

    Google Scholar 

Cross references

  1. Changing Sea Levels

    Google Scholar 

  2. Classification of Coasts (See Holocene Coastal Geomorphology)

    Google Scholar 

  3. Coastal Subsidence

    Google Scholar 

  4. Demography of Coastal Populations

    Google Scholar 

  5. Deltas

    Google Scholar 

  6. Dikes

    Google Scholar 

  7. Global Warming, Effect (See Greenhouse Effect and Global Warming)

    Google Scholar 

  8. Greenhouse Effect and Global Warming

    Google Scholar 

  9. Natural Hazards

    Google Scholar 

  10. Sea-Level Rise, Effect

    Google Scholar 

  11. Small Islands Wetlands

    Google Scholar 

Cross-reference

  1. Beach Sediment Characteristics

    Google Scholar 

  2. Changing Sea Levels

    Google Scholar 

  3. Drift and Swash Alignments

    Google Scholar 

  4. Gravel Beaches

    Google Scholar 

  5. Paraglacial Coasts

    Google Scholar 

  6. Reflective Beaches

    Google Scholar 

  7. Sediment Budget

    Google Scholar 

Cross-references

  1. Beach Sediment Characteristics

    Google Scholar 

  2. Cross-Shore Sediment Transport

    Google Scholar 

  3. Dynamic Equilibrium of Beaches

    Google Scholar 

  4. Gravel Barriers

    Google Scholar 

  5. Longshore Sediment Transport

    Google Scholar 

Cross-references

  1. Changing Sea Levels

    Google Scholar 

  2. Climate Patterns in the Coastal Zone

    Google Scholar 

  3. Coastal Climate

    Google Scholar 

  4. Coastal Temperature Trends

    Google Scholar 

  5. Demography of Coastal Populations

    Google Scholar 

  6. El Niño-Southern Oscillation

    Google Scholar 

  7. Eustacy

    Google Scholar 

  8. Meteorologic Effects on Coasts

    Google Scholar 

  9. Sea-Level Changes During the Last Millenium

    Google Scholar 

  10. Sea-Level Rise, Effect

    Google Scholar 

Cross-references

  1. Continental Shelves

    Google Scholar 

  2. Energy and Sediment Budgets of the Global Coastal Zone

    Google Scholar 

  3. Longshore Sediment Transport

    Google Scholar 

  4. Navigation Structures

    Google Scholar 

  5. Net Transport

    Google Scholar 

  6. Sediment Budget

    Google Scholar 

  7. Sediment Transport (See Cross-Shore Sediment Transport and Longshore Sediment Transport)

    Google Scholar 

  8. Waves

    Google Scholar 

1._Cross-references

  1. Beach Stratigraphy

    Google Scholar 

  2. Coastal Sedimentary Facies

    Google Scholar 

  3. Hydrology of the Coastal Zone

    Google Scholar 

  4. Instrumentation (See Beach and Nearshore Instrumentation)

    Google Scholar 

  5. Monitoring Coastal Geomorphology

    Google Scholar 

  6. Paleocoastlines

    Google Scholar 

  7. Sequence Stratigraphy

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this entry

Cite this entry

Schellmann, G. et al. (2005). G. In: Schwartz, M.L. (eds) Encyclopedia of Coastal Science. Encyclopedia of Earth Science Series. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3880-1_7

Download citation

Publish with us

Policies and ethics