Skip to main content

Dalmatian Coasts

A Dalmatian coast is a prototype of a primary coast by ingression of the rising postglacial sea into a relief of coast-parallel anticlines and synclines from a young orogenesis (Holmes, 1965; Kelletat, 1995; Jackson, 1997), and is named after the landscape of Dalmatia (Croatia, former Yugoslavia, Adriatic Sea, Mediterranean). This type of coastline is very rare, a major example may be the Island of Sumatra with the Mentawai Islands strongly parallel in the Indian Ocean. More resistant elongated cuestas may build the island chains instead of anticlines. The narrow channels between these long islands are called “vallone” or “canale” (from the Italian word for channel or valley), and the Dalmatian coast therefore is named a canale- or vallone-coast, as well (Figure D1). The coastlines of the central part of Croatia, built up mostly by Mesozoic limestones, show only very little forming by true littoral processes. Beaches are missing as well as extended cliffs. The first...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Holmes, A., 1965. Principles of Physical Geology. New York: Ronald Press.

    Google Scholar 

  2. Jackson, J.A., 1997. Glossary of Geology. Alexandria, VA: American Geological Institute.

    Google Scholar 

  3. Kelletat, D., 1995. Atlas of Coastal Geomorphology and Zonality. Journal of Coastal Research (Special Issue No. 13.).

    Google Scholar 

  4. Bird, E.C.F., 1985. Coastline Changes-A Global Review. Chichester, England: John Wiley-Interscience.

    Google Scholar 

  5. Chen, C.A, 2000. The Three Gorges Dam: in the East China Sea. Geophysical Research Letters, 27(3): 381

    Google Scholar 

  6. Chen, J., and Xu, H., 1995. Impacts of the Yangtze River Three-Gorge hydro-engineering works on the Yangtze Estuary. Resources and Environment in the Yangtze Valley, 4(3): 242–246.

    Google Scholar 

  7. Leatherman, S.P., 1988. Beach response strategies to accelerated sealevel rise. In Proceedings of the 2nd North American Conference on Preparing for Climate Change. Washington, DC: The Climate Institute, pp. 353–358

    Google Scholar 

  8. Nichols, F.H., Cloern, J.E., and Luoma, S.N., 1986. The modification of an estuary. Science, 231: 567–573.

    Google Scholar 

  9. Postel, S., 1996. Forging a sustainable water strategy. In Starke, L. (ed.), State of the World 1996. A Worldwatch Institute Report on Progress Towards a Sustainable Society. New York: W.W. Norton and Company, pp. 40–59.

    Google Scholar 

  10. Revenga, C., Murray, S., Abramovitz, J., and Hammond, A., 1998. Watersheds of the World: Ecological Value and Vulnerability. Washington, DC: World Watch Institute.

    Google Scholar 

  11. Rozengurt, M., and Haydock, I., 1993. Freshwater flow diversion and its implications for coastal zone ecosystems. Transactions of the 58th North American Wildlife and Natural Resources Conference. Wildlife Management Institute, pp. 287–293.

    Google Scholar 

  12. Rozengurt, M.A., and Hedgpeth, J.W., 1989. The impact of altered river flow on the ecosystem of the Caspian Sea. Reviews in Aquatic Science, 1: 337–362.

    Google Scholar 

  13. Smith, S.E., and Abdel-Kader, A., 1988. Coastal erosion along the Egyptian delta. Journal of Coastal Research, 4(2): 245–255.

    Google Scholar 

  14. Church, J.A., Gregory, J.M., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M.T., Qin, D., and Woodworth, P.L., 2001. Changes in sea level. In Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., and Johnson, C.A. (eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, pp. 639–693.

    Google Scholar 

  15. Day, J.W., Pont, D., Hensel, P., and Ibanez, C., 1995. Impacts of sea level rise on deltas in the Gulf of Mexico and the Mediterranean: the importance of pulsing events to sustainability. Estuaries, 18: 636–647.

    Google Scholar 

  16. Day, J.W., Rybczyk, J.M., Scarton, F., Rismondo, A., Are, D., and Cecconi, G., 1999. Soil accretionary dynamics, sea level rise and the survival of wetlands in the Venice lagoon: a field and modeling approach. Estuarine, Coastal and Shelf Science, 49: 607–628.

    Google Scholar 

  17. Day, J.W., Psuty, N.P., and Perez, B.C., 2000. The role of pulsing events in the functioning of coastal barriers and wetlands: implications for human impact, management and the response to sea level rise. In Weinstein, M.P., and Kreeger, D.A. (eds.), Concepts and Controversies in Tidal Marsh Ecology. Dordrecht: Kluwer Academic Publishers, pp. 633–660.

    Google Scholar 

  18. Kreeger, D.A., and Newell, R.I.E., 2000. Trophic complexity between producers and invertebrate consumers in salt marshes. In Weinstein, M.P., and Kreeger, D.A. (eds.), Concepts and Controversies in Tidal Marsh Ecology. Dordrecht: Kluwer Academic Publishers, pp. 187–200.

    Google Scholar 

  19. Morris, J.T., Sundareshwar, P.V., Nietch, C.T., Kjerfve, B., and Cahoon, D.R., 2002. Response of coastal wetlands to rising sea levels. Ecology, 83: 2869–2877.

    Google Scholar 

  20. Nuttle, W.K., Brinson, M.M., Cahoon, D., Callaway, J.C., Christian, R.R., Chmura, G.L., Conner, W.H., Day, R.H., Ford, M., Grace, J., Lynch, J., Orson, R.A., Parkinson, R.W., Reed, D., Rybczyk, J.M., Smith T.J., III, Stumpf, R.P., and Williams, K., 1997. Conserving coastal wetlands despite sea level rise. EOS, 78: 257–261.

    Google Scholar 

  21. Odum, E.P., 1980. The status of three ecosystem-level hypothesis regarding salt marsh estuaries: tidal subsidy, outwelling, and detritus-based food chains. In Kennedy, V.S. (ed.), Estuarine Perspectives. New York: Academic Press, pp. 485–495.

    Google Scholar 

  22. Roberts, H.H., 1997. Dynamic changes of the Holocene Mississippi River delta plain: the delta cycle. Journal of Coastal Research, 13:605–627.

    Google Scholar 

  23. Whittaker, R.H., and Likens G.E., 1973. Primary production: the biosphere and man. Human Ecology, 1: 357–369.

    Google Scholar 

  24. Alonso, B., Field, M.E., Gardner, J.V., and Maldonado, A., 1990. Sedimentary evolution of the Pliocene and Pleistocene Ebro margin, northeastern Spain. Marine Geology, 95: 313–331.

    Google Scholar 

  25. Bates, C.C., 1953. Rational theory of delta formation. American Association of Petroleum Geologists Bulletin, 37: 2119–2161.

    Google Scholar 

  26. Boyd, R., Suter, J.R., and Penland, S., 1989. Sequence stratigraphy of the Mississippi delta. Gulf Coast Association of Geological Societies Transactions, 39: 331–340.

    Google Scholar 

  27. Coleman, J.M., 1981. Deltas: Processes of Deposition and Models for Exploration. Minneapolis: Burgess.

    Google Scholar 

  28. Coleman, J.M., and Prior, D.B., 1980. Deltaic sand bodies. In American Association of Petroleum Geologists Continuing Education Course 15, Tulsa, OK, p. 171

    Google Scholar 

  29. Coleman, J.M., and Wright, L.D., 1975. Modern river deltas: variability of processes and sand bodies. In Broussard, M.L. (ed.), Deltas: Models for Exploration. Houston, TX: Houston Geological Society, pp. 99–146.

    Google Scholar 

  30. Davis, R.A., Jr., 1983. Depositional Systems: A Genetic Approach to Sedimentary Geology. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  31. Davis, R.A., Jr., 1994. The Evolving Coast. New York: Scientific American Library.

    Google Scholar 

  32. Donaldson, A.C., Martin, R.H., and Kanes, W.H., 1970. Holocene Guadalupe delta of Texas gulf coast. In Morgan, J.P. (ed.), Deltaic Sedimentation: Modern and Ancient. Tulsa, OK: Society of Economic Paleontologists and Mineralogists, Special Publication 15, pp. 107–137.

    Google Scholar 

  33. Elliot, T., 1986. Deltas. In Reading, H.G. (ed.), Sedimentary Environments. Oxford: Blackwell Scientific Publications, pp. 113–154.

    Google Scholar 

  34. Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342: 637–642.

    Google Scholar 

  35. Fisher, W.L., Brown, L.F., Jr., Scott, A.J., and McGowen, J.H., 1969. Deltas systems in the exploration for oil and gas: a research colloquium. Austin: University of Texas, Bureau of Economic Geology.

    Google Scholar 

  36. Frazier, D.E., 1967. Recent deltaic deposits of the Mississippi River: their development and chronology. Gulf Coast Association of Geological Societies Transactions, 27: 287–315.

    Google Scholar 

  37. Galloway, William E., 1975. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. In Broussard, M.L. (ed.), Deltas: Models for Exploration. Houston, TX: Houston Geological Society, pp. 87–96.

    Google Scholar 

  38. Gilbert, G.K., 1884. The topographical features of lake shores. United States Geological Survey Annual Report, 5: 104–108.

    Google Scholar 

  39. Inman, D.L., and Nordstrom, C.E., 1971. On the tectonic and morphologic classification of coasts. Journal of Geology, 97: 1–21.

    Google Scholar 

  40. Kindinger, J.L., 1988. Seismic stratigraphy of the Mississippi-Alabama shelf and upper continental slope. Marine Geology, 83: 79–94.

    Google Scholar 

  41. Kindinger, J.L., Balson, P.S., and Flocks, J.G., 1994. Stratigraphy of the Mississippi-Alabama shelf and the mobile river incised-valley system. In Dalrymple, R.W., Boyd, R., and Zaitlin, B.A. (eds.), Society of Economic Paleontologists and Mineralogists, Special Publication 51, pp. 83–95.

    Google Scholar 

  42. Kostaschuk, R.A., 1985. River mouth processes in a fjord delta, British Columbia Canada. Marine Geology, 69: 1–23.

    Google Scholar 

  43. Maldonado, A., 1975. Sedimentation, stratigraphy and development of the Ebro Delta, Spain. In Broussard, M. L. (ed.), Deltas: Models for Exploration. Houston: Houston Geological Society, pp. 311–338.

    Google Scholar 

  44. McEwen, M.C., 1969. Sedimentary facies of the modern Trinity delta. In Lanlford, R.R., and Rogers, J.J.W. (eds.), Holocene Geology of the Galveston Bay Area. Houston Geological Society, pp. 53–77.

    Google Scholar 

  45. Moore, G.T., and Asquith, D.O., 1971. Delta: term and concept. Geological Society of America Bulletin, 82: 2563–2568.

    Google Scholar 

  46. Morton, R.A., and Price, W.A., 1987. Late Quaternary sea-level fluctuations and sedimentary phases of the Texas coastal plain and shelf. In Nummedal, D., Pilkey, O.H., and Howard, J.D. (eds.), Sea-Level Fluctuation and Coastal Evolution. Society of Economic Paleontologists and Mineralogists, Special Publication 41, pp. 181–198.

    Google Scholar 

  47. Müller, G., 1966. The new Rhine delta in Lake Constance. In Broussard, M.L. (ed.), Deltas: Models for Exploration. Houston, TX: Houston Geological Society, pp. 107–124.

    Google Scholar 

  48. Naidu, A.S., and Mowatt, T.C., 1975. Depositional environments and sediment characteristics of the Colville and adjacent deltas, Northern Artic Alaska. In Broussard, M.L. (ed.), Deltas: Models for Exploration. Houston, TX: Houston Geological Society, pp. 283–307.

    Google Scholar 

  49. Nichol, S.L., Boyd, R., and Penland, S., 1996. Sequence stratigraphy of a coastal-plain incised valley estuary: Lake Calcasieu, LA. Journal of Sedimentary Research, 66(4): 847–857.

    Google Scholar 

  50. Orton, G.J., and Reading, H.G., 1993. Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain size. Sedimentology, 40: 475–512.

    Google Scholar 

  51. Penland, S., and Suter, J.R. 1989. The geomorphology of the Mississippi River chenier plain. Marine Geology, 90: 231–258.

    Google Scholar 

  52. Reineck, H.E., and Singh, I.B., 1973. Depositional Sedimentary Environments with Reference to Terrigenous Clastics. New York: Springer Verlag.

    Google Scholar 

  53. Stanley, D.J., and Warne, A.G., 1994. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise. Science, 265: 228–231.

    Google Scholar 

  54. Stanley, D.J., and Warne, A.G., 1997. Holocene sea-level change and early human utilization of deltas. Geological Society of American Today, 7(12): 1–7.

    Google Scholar 

  55. Suter, J.R., 1994. Deltaic coasts. In Carter, R.W.G., and Woodroffe, C.D. (eds.), Coastal Evolution: Late Quaternary Shoreline Morphodynamics, pp. 87–114.

    Google Scholar 

  56. Suter, J.R., Berryhill, H.L., Jr., and Penland, S., 1987. Late Quaternary sea-level fluctuations and depositional sequences, southwest Louisiana continental shelf. In Nummedal, D., Pilkey, O. H., and Howard, J. D. (eds.), Sea-Level Fluctuation and Coastal Evolution. Society of Economic Paleontologists and Mineralogists, Special Publication 41, pp. 199–219.

    Google Scholar 

  57. Tye, R.S., and Coleman, J.M., 1989. Depositional processes and stratigraphy of fluvially dominated lacustrine deltas: Mississippi Delta plain. Journal of Sedimentary Petrology, 59(6): 973–996.

    Google Scholar 

  58. van Heerden, I., and Roberts, H.H., 1988. Facies development Atchafalaya delta, Louisiana: a modern bayhead delta. American Association of Petroleum Geologists, 72(4): 439–453.

    Google Scholar 

  59. Wright, L.D., 1977. Sediment transport and deposition at river mouths: a synthesis. Geological Society of America Bulletin, 88: 857–868.

    Google Scholar 

  60. Wright, L.D., and Coleman, J.M., 1973. Variations in morphology of major river deltas as functions of ocean wave and river discharge regimes. American Association of Petroleum Geologists, Bulletin, 57: 370–398.

    Google Scholar 

  61. Burke, L., Kura, Y., Kassem, K., Revenga, C., Spalding, M., and McAllister, D., 2001. Coastal Ecosystems. Washington, DC: World Resources Institute.

    Google Scholar 

  62. Culliton, T.J., Warren, M.A., Goodspeed, T.R., Remer, D.G., Blackwell, C.M., and MacDonough, J.J., 1990. 50 Years of Population Change along the Nation’s Coasts, 1960–2010. Rockville, MD: National Oceanic and Atmospheric Administration.

    Google Scholar 

  63. Goldberg, E.D. 1994. Coastal Zone Space, Prelude to Conflicts. Paris: UNESCO Publishing.

    Google Scholar 

  64. United Nations, 1996. World Population Prospects. The 1996 Revision, Annex I: Demographic Indicators, 24 October. New York: UN Department of Economic and Social Affairs, Population Division.

    Google Scholar 

  65. Birkemeier, W.A., 1985. Field data on seaward limit of profile change. Journal of Waterway, Port, Coastal and Ocean Engineering, 111(3):598–602.

    Google Scholar 

  66. Grosskopf, W.G., and Kraus, N.C., 1994. Guidelines for surveying beach nourishment projects. Shore and Beach, 62(2): 9–16.

    Google Scholar 

  67. Hallermeier, R.J., 1977. Calculating a yearly limit depth to the active beach profile. Vicksburg: U.S. Army Engineer Waterways Experiment Station, Coastal Engineering Research Center. Technical Paper TP 77-9.

    Google Scholar 

  68. Hallermeier R.J., 1978. Uses for a calculated limit depth to beach erosion. Proceedings of the Sixteenth Coastal Engineering Conference. American Society of Civil Engineers, New York: A-S-O-C-E, Ch. 88, pp. 1493–1512.

    Google Scholar 

  69. Hallermeier, R.J., 1981a. A profile zonation for seasonal sand beaches from wave climate. Coastal Engineering, 4: 253–277.

    Google Scholar 

  70. Hallermeier, R.J., 1981b. Terminal settling velocity of commonly occurring sand grains. Sedimentology, 28: 859–865.

    Google Scholar 

  71. Hallermeier, R.J., 1981c. Seaward limit of significant sand transport by waves: an annual zonation for seasonal profiles. Vicksburg: U.S. Army Engineer Waterways Experiment Station, Coastal Engineering Research Center. Coastal Engineering Technical Aide CETA 81-2.

    Google Scholar 

  72. Hands, E.B., 1983. The Great Lakes as a test model for profile response to sea level changes. In Komar, P. D. (ed.), Handbook of Coastal Processes and Erosion,, Boca Raton, FL: CRC Press, pp. 167–189. (Also reprinted as Miscellaneous Paper CERC-84-14. Vicksburg: U.S. Army Engineer Waterways Experiment Station, Coastal Engineering Research Center.)

    Google Scholar 

  73. Kraus, N.C., and Harikai, S., 1983. Numerical model of the shoreline change at Oarai Beach. Coastal Engineering, 7: 1–28.

    Google Scholar 

  74. Kraus, N.C., Larson, M., and Wise, R. 1999. Depth of closure in beach-fill design. Proceedings of the 12th National Conference on Beach Preservation Technology. Florida Shore and Beach Preservation Association, pp. 271–286.

    Google Scholar 

  75. Morang, A., Rahoy, D.S., and Grosskopf, W.M., 1999. Regional geologic characteristics along the south shore of Long Island, New York. Proceedings of Coastal Sediments’ 99. American Society of Civil Engineers, pp. 1568–1583.

    Google Scholar 

  76. Nicholls, R.J., Birkemeier, W.A., and Lee, Guan-hong, 1998. Evaluation of depth of closure using data from Duck, NC, USA. Marine Geology, 148: 179–201.

    Google Scholar 

  77. Stauble, D.K., Garcia, A.W., Kraus, N.C., Grosskopf, W.G., and Bass, G.P., 1993. Beach nourishment project response and design evaluation, Ocean City, Maryland. Vicksburg: U.S. Army Engineer Waterways Experiment Station. Technical Report CERC-93-13.

    Google Scholar 

  78. Stive, M.J.F., DeVriend, H.J., Nicholls, R.J., and Capobianco, M., 1992. Shore nourishment and the active zone; a timescale dependent view. Proceedings of the 23rd Coastal Engineering Conference. American Society of Civil Engineers, New York, pp. 2464–2473.

    Google Scholar 

  79. Ahrens, J.P., and Hands, E.B., 1998. Parameterizing beach erosion/ accretion conditions. Proceedings of the 26th Coastal Engineering Conference, American Society of Civil Engineers, 2, pp. 2382–2394.

    Google Scholar 

  80. Dean, R.G., 1974. Evaluation and development of water wave theories for engineering application; Volume I—Presentation of research results; Volume II—Tabulation of dimensionless stream-function variables. Fort Belvoir, VA: Coastal Engineering Research Center Special Report No. 1.

    Google Scholar 

  81. Hallermeier, R.J., 1980. Sand motion initiation by water waves: two asymptotes. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE 106(WW3): 299–318.

    Google Scholar 

  82. Kulga, D., and Adanali, K., 1990. Country report on water resources development in Turkey. Paper to regional seminar on water management strategies in Mediterranean countries, Algiers. CEE, Brussels, Belgium.

    Google Scholar 

  83. Matz, R., 1965. Desalination of sea and brackish water. The present status of the art in Israël. In Tamburini, S. (ed.), Aqua dolce dal mare. Milano, Italy.

    Google Scholar 

  84. Nativ, R., 1988. Problems of an over-developed water system, the Israeli case. Water Quality Bulletin, 13: 126–131.

    Google Scholar 

  85. Nebbia, G., 1968. Economics of the conversion of saline waters to fresh water for irrigation. In Boyko, H. (ed.), Saline Irrigation for Agriculture and Forestry, World Academy of Art and Science, Volume 4. The Hague: Junk, W.N.V., pp. 267–288.

    Google Scholar 

  86. Pearce, F., 1996. L’enjeu de l’eau. In Skinner, J., and Krivelli, A.J. (eds.), Conservation des zones humides méditerranéennes, Volume 5. Arles, France: Station Biologique de la Tour du Valat.

    Google Scholar 

  87. Rhoadhes, J.D., Kandiah, A., and Mashali, A.M., 1992. The use of saline waters for crop production. Irrigation and drainage paper No 48. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  88. Amirman, D.H.K., and Wilson, A.W., 1973. Coastal Deserts, Their Natural and Human Environments. Tucson, AZ: The University of Arizona Press.

    Google Scholar 

  89. Berkofsky, L., and Wurtele, M.G., 1987. Progress in Desert Research. Totowa, NJ: Roman and Littlefield.

    Google Scholar 

  90. Cloudsley-Thompson, J., 1975. The Living Earth. Desert Life. London: The Danbury Press, Aldus Books Limited.

    Google Scholar 

  91. Logan, R.F., 1960. The Central Namib Desert.. National Academy of Sciences. National Research Council, Publication 758, 162 p.

    Google Scholar 

  92. Logan, R.F., 1969. Geography of the Central Namib Desert. In McGinnies, W.G., and Goldman, B.J. (eds.), Arid Lands in Perspective, Washington, DC, The American Association for the Advancement of Science, and Tucson, AZ: University of Arizona Press.

    Google Scholar 

  93. Mabbutt, J.A., 1977. Desert Landforms, An Introduction to Systematic Geomorphology, Volume 2, Cambride, MA: The MIT Press.

    Google Scholar 

  94. Mares, M.A. (ed.), 1999, Encyclopedia of Deserts, Norman: University of Oklahoma Press.

    Google Scholar 

  95. McGinnies, W.G., and Goldman, B.J., 1968. Deserts of the World. Tucson: The University of Arizona Press.

    Google Scholar 

  96. Meigs, P., 1966. Geography of Coastal Deserts. Liege Begique Vaillant Carmanne S.A.: UNESCO.

    Google Scholar 

  97. Nordstorm, K., Psuty, N., and Carter, B., 1990. Coastal Dunes Form and Process. New York: John Wiley and Sons.

    Google Scholar 

  98. Schneider, S.H. 1996. Encyclopedia of Climate and Weather Volume 2, New York: Oxford University Press.

    Google Scholar 

  99. Snead, R.E., 1966. Physical Geography Reconnaissance Las Bela Coastal Plain. West Pakistan. Baton Rouge: Louisiana State University Coastal, Series No. 13.

    Google Scholar 

  100. Snead, R.E., 1968. Weather patterns in southern West Pakistan. Series B, 16: 316 Archives for Meteorology Geophysics and Biodimatology 346.

    Google Scholar 

  101. Snead, R.E., 1970. Physical Geography of the Makran Coastal Plain of Iran, National Technical Information Service, Springfield, VA: U. S. Department of Commerce, Report No. AD 707745V.

    Google Scholar 

  102. Snead, R.E., 1982. Coastal Landforms and Surface Features A Photographic Atlas and Glossary. Stroudsburg, PA: Hutchinson Ross Publishing Company.

    Google Scholar 

  103. Thom, B.G. (ed.), 1984. Coastal Geomorphology in Australia. North Ryde, NSW Australia: Academic Press.

    Google Scholar 

  104. Trenhaile, A.S., 1987. The Geomorphology of Rocky Coasts. Oxford, England: Oxford University Press.

    Google Scholar 

  105. Trewartha, G.T., 1966. The Earth’s Problems Climates. London: Methuen and Co., Ltd.

    Google Scholar 

  106. Young, E.D., 1999. Innovations in Earth Sciences, Santa Barbara: ABC-CLIO.

    Google Scholar 

  107. Kraus, N., and Pilkey, O. (eds.), 1988. The effects of seawalls on the beach. Journal of Coastal Research, SI4, p. 146.

    Google Scholar 

  108. Marsh, G.P., 1885. Earth as Modified by Human Action. New York: Charles Scribner’s Sons.

    Google Scholar 

  109. Morton, R.A., Paine, J.G., and Gibeaut, J.C., 1994. Stages and durations of post-storm beach recovery, southeastern Texas coast. Journal of Coastal Research, 10: 884–908.

    Google Scholar 

  110. National Research Council, 1995. Beach Nourishment and Protection. Washington, DC: National Academy Press.

    Google Scholar 

  111. Nicholls, R.J., and Branson, J. (eds.), 1998. The Geographical Journal, 164, part 3, pp. 255–278.

    Google Scholar 

  112. Nordstrom, K.F., 2000. Beaches and Dunes of Developed Coasts. New York: Cambridge University Press.

    Google Scholar 

  113. Phillips, J.D., 1991. The human role in earth surface systems: some theoretical considerations. Geographical Analysis, 23: 316–331.

    Google Scholar 

  114. van der Muelen, F., Jungerius, P.D., and Visser, J.H. (eds.), 1989. Perspectives in Coastal Dune Management. The Hague: SPB Academic Publishing.

    Google Scholar 

  115. Titus, J.G., 1990. Greenhouse effect, sea level rise, and barrier islands: a case study of Long Beach Island, NJ. Coastal Management, 18:65–90.

    Google Scholar 

  116. Walker, H.J., 1985. The shoreline: realities and perspectives. In Vallega, A., DaPozzo, C. and Fabbri, P. (eds.) Coastal Planning: Realities and Perspectives, Genoa: Commune di Genova, pp. 59–90.

    Google Scholar 

  117. Jelgersma, S., 1961. Holocene sea level changes in the Netherlands. Ph.D. thesis, State University Leiden, Mededelingen Geologische Stichting, CVI-7.

    Google Scholar 

  118. U.S. Army Corps of Engineers, 1984. Shore Protection Manual, Part 1 and 2. Washington DC: Government Printing Office. U.S.

    Google Scholar 

  119. Galvin, C.J., 1968. Breaker type classification on three laboratory beaches. Journal of Geophysical Research, 73: 3651–3659.

    Google Scholar 

  120. Guza, R.T., 1974. Excitation of Edge Waves and Their Role in the Formation of Beach Cusps. Unpublished Ph.D. dissertation, University of California, San Diego.

    Google Scholar 

  121. Masselink, G., and Hegge, B., 1995. Morphodynamics of meso-and macrotidal beaches: examples from central Queensland, Australia. Marine Geology, 129, 1–23.

    Google Scholar 

  122. Sherman, D.J., and Bauer, B.O., 1993. Dynamics of beach-dune systems. Progress in Physical Geography, 17: 413–447.

    Google Scholar 

  123. Short, A.D., 1991. Macro-meso tidal beach morphodynamics—an overview. Journal of Coastal Research, 7: 417–436.

    Google Scholar 

  124. Short, A.D., and Hesp, P.A., 1982. Wave, beach and dune interactions in southeastern Australia. Marine Geology, 48: 259–284.

    Google Scholar 

  125. Sonu, C.J., and Van Beek, J.L., 1971. Systematic beach changes on the outer banks, North Carolina. Journal of Geology, 79: 416–425.

    Google Scholar 

  126. Wright, L.D., and Short, A.D., 1984. Morphodynamic variability of surf zones and beaches: a synthesis. Marine Geology, 56: 93–118.

    Google Scholar 

  127. Bruun, P., 1990a. Beach nourishment. Improved economy through better profiling and backpassing from offshore sources, Journal of Coastal Research, 6(2): 265–277.

    Google Scholar 

  128. Bruun, P., 1990b. Port Engineering. Houston, Gulf Publishing Company.

    Google Scholar 

  129. Bruun, P., 1991. Optimum dredging for artificial nourishment of beaches. Proceedings ASCE Conference on Water Resources, pp. 303–307.

    Google Scholar 

  130. Bruun, P., 1996. New Principles and methods in maintaining beaches and depths in channels and entrances. Proceedings of the Bahia Blanca International Symposium, Journal of Coastal Research, 1–17.

    Google Scholar 

  131. Bruun, P. and Willekes, G., 1992. Bypassing and backpassing at harbors, navigation channels and tidal entrances: use of shallowwater draft hopper dredgers with pump-out capabilities Journal of Coastal Research, 8(4): 972–977.

    Google Scholar 

  132. International Association of Dredging Companies (IADC) and the Central Dredging Association (CEDA), 1999. Environmental Aspects of Dredging, Reuse, Recycle or Relocate. The Hague: International Association of Dredging companies.

    Google Scholar 

  133. Mohan, Ram K., Urso, Dennis C., and Steele, Peter R., 1999. Optimization of Dredged Material Placement Using the Sub-channel Placement Cell Concept. Western Dredging Association.

    Google Scholar 

  134. Visser, K., and Bruun, P., 1997. The Punaise underwater dredger, Journal of Coastal Research, 13(4): 1929–1999.

    Google Scholar 

  135. Wakeman, Th.H., 1999. Using a Materials Assessment Process for Managing Placement of Contaminated Dredged Materials. Western Dredging Association.

    Google Scholar 

  136. World Bank, 1990. Environmental considerations for port and harbor developments. World Bank Technical Paper 126. Washington, DC: The World Bank.

    Google Scholar 

  137. Bird, E.C.F., 1996. Lateral grading of beach sediments: a commentary. Journal of Coastal Research, 12: 774–785.

    Google Scholar 

  138. Davies, J.L., 1980. Geographical Variation in Coastal Development, 2nd edn. London: Longman.

    Google Scholar 

  139. Escoffier, F.F., 1954. Travelling forelands and the shoreline processes associated with them. Bulletin Beach Erosion Board, U.S., 9: 11–14.

    Google Scholar 

  140. Gooding, R.M., and Magnuson, J.J., 1967. Ecological significance of drifting objects to pelagic fishes. Pacific Science, 21: 486–497.

    Google Scholar 

  141. Haggblom, A., 1982. Driftwood in Svalbard as an indicator of sea ice conditions. Geografiska Annaler, 64A: 81–94.

    Google Scholar 

  142. .Maser, C. et al., 1988. From the Forest to the Sea: A Story of Fall Trees. Gen. Tech. Rep. PNW-GTR-229. U.S. Department of Agriculture, Forest Service, pp. 83–149.

    Google Scholar 

  143. Sedell, J.R., and Duval, W.S., 1985. Water transportation and storage of logs. In Meehan, W.R. (eds.) Influence of forest and rangeland management on anadromous fish habitat in western North America. Gen. Tech. Rep. PNW-186. U.S. Department of Agriculture, Forest Service. Pacific Northwest Forest and Range Experiment Station, pp. 1–68.

    Google Scholar 

  144. Bird, E.C.F., 1972. Coasts. Canberra: Australian National University Press.

    Google Scholar 

  145. Davies, J.L., 1957. The importance of cut and fill in the development of beach ridges. Australian Journal of Science, 20: 105–111.

    Google Scholar 

  146. Davies, J.L., 1977. Geographical Variation in Coastal Development. London: Longman.

    Google Scholar 

  147. Goldsmith, V., 1985. Coastal dunes. In Davis, R.A. (ed.), Coastal Sedimentary Environments. New York: Springer Verlag, pp. 303–378.

    Google Scholar 

  148. Komar, P.D., 1976. Beach Processes and Sedimentation. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  149. Pethick, J., 1984. An Introduction to Coastal Geomorphology. London: Edward Arnold.

    Google Scholar 

  150. Bakker, W.T., 1968. Mathematical theory about sand waves and its application on the Dutch Wadden Isle of Vlieland. Shore and Beach, 36: 4–14.

    Google Scholar 

  151. Bruun, P., 1954. Migrating sand waves or sand humps, with special reference to investigations carried out on the Danish North Sea coast. Proceedings of the 5th International Conference on Coastal Engineering, ASCE. New York, pp. 269–295.

    Google Scholar 

  152. Bruun, P., 1962. Sea level rise as a cause of shore erosion. Journal of Waterway, Port, Coast, and Ocean Engineering, ASCE, 88: 117–130.

    Google Scholar 

  153. Dean, R.G. 1991. Equilibrium beach profiles: characteristics and applications, Journal of Coastal Research, 7, 1: 53–84.

    Google Scholar 

  154. Dean, R.G., Cheng, J., and Malakar, S., 1998. Characteristics of shoreline change along the sandy beaches of the state of Florida: an atlas. Report No. UFL/COEL-98/015, Gainesville, FL: Department of Coastal and Oceanographic Engineering, University of Florida.

    Google Scholar 

  155. Kriebel, D.L., and Dean, R.G., 1985. Numerical simulation of timedependent beach and dune response. Coastal Engineering, 9(3): 221–246.

    Google Scholar 

  156. Larson, M., and Kraus, N.C. 1989. SBEACH: numerical model for simulating storm-induced beach change, Report 1: empirical foundation and model development. U.S. Army Coastal Engineering Research Center, Waterways Experiment Station, Technical Report CERC-89-9.

    Google Scholar 

  157. Thevenot, M.M., and Kraus, N.C., 1995. Longshore sand waves at Southampton Beach, New York, observations and numerical simulation of their movement. Marine Geology, 126: 249–269.

    Google Scholar 

  158. Thompson, W.C., 1987. Seasonal orientation of California beaches, Shore and Beach, 55(3–4): 67–70.

    Google Scholar 

  159. Verhagen, H.J., 1989. Sand waves along the Dutch coast, Coastal Engineering, 13: 129–147.

    Google Scholar 

Cross-references

  1. Asia, Eastern, Coastal Geomorphology

    Google Scholar 

  2. Endogenic and Exogenic Factors

    Google Scholar 

  3. Europe, Coastal Geomorphology

    Google Scholar 

  4. Holocene Coastal Geomorphology

    Google Scholar 

  5. Karst Coasts

    Google Scholar 

  6. Sea-Level Changes During the Last Millenium

    Google Scholar 

  7. Submerging Coasts

    Google Scholar 

Cross-references

  1. Asia, Eastern, Coastal Geomorphology

    Google Scholar 

  2. Beach Erosion

    Google Scholar 

  3. Deltas

    Google Scholar 

  4. Erosion Processes

    Google Scholar 

  5. Estuary

    Google Scholar 

  6. Hydrology of Coastal Zone

    Google Scholar 

  7. Submerging Coasts

    Google Scholar 

Cross-references

  1. Coastal Subsidence

    Google Scholar 

  2. Dams, Effect on Coasts

    Google Scholar 

  3. Deltas

    Google Scholar 

  4. Dikes

    Google Scholar 

  5. Estuaries

    Google Scholar 

  6. Eustasy

    Google Scholar 

  7. Greenhouse Effect and Global Warming

    Google Scholar 

  8. Mangroves, Ecology

    Google Scholar 

  9. Salt Marsh

    Google Scholar 

  10. Sea-Level Rise, Effect

    Google Scholar 

  11. Wetlands

    Google Scholar 

Cross-references

  1. Changing Sea Levels

    Google Scholar 

  2. Coastal Sedimentary Facies

    Google Scholar 

  3. Deltaic Ecology

    Google Scholar 

  4. Ingression, Regression, and Transgression

    Google Scholar 

  5. Late Quaternary Marine Transgression

    Google Scholar 

  6. Sea-Level Changes During the Last Millenium

    Google Scholar 

  7. Sea-Level Rise, Effect

    Google Scholar 

  8. Sedimentary Basins

    Google Scholar 

  9. Sequence Stratigraphy

    Google Scholar 

  10. Submerging Coasts

    Google Scholar 

  11. Wetlands

    Google Scholar 

Cross-references

  1. Beach Use and Behaviors

    Google Scholar 

  2. Carrying Capacity in Coastal Areas

    Google Scholar 

  3. Coastal Zone Management

    Google Scholar 

  4. Conservation of Coastal Sites

    Google Scholar 

  5. Economic Value of Beaches

    Google Scholar 

  6. Environmental Quality

    Google Scholar 

  7. Global Vulnerability Analysis

    Google Scholar 

  8. Human Impact on Coasts

    Google Scholar 

  9. Meteorologic Effects on Coasts

    Google Scholar 

  10. Natural Hazards

    Google Scholar 

  11. Small Islands

    Google Scholar 

  12. Tourism and Coastal Development

    Google Scholar 

  13. Water Quality

    Google Scholar 

Cross-references

  1. Cross-Shore Sediment Transport

    Google Scholar 

  2. Cross-Shore Variation of Grain Size on Beaches

    Google Scholar 

  3. Dynamic Equilibrium of Beaches

    Google Scholar 

  4. Littoral

    Google Scholar 

  5. Net Transport

    Google Scholar 

  6. Numerical Modeling

    Google Scholar 

Cross-references

  1. Beach Erosion

    Google Scholar 

  2. Beach Processes

    Google Scholar 

  3. Beach Sediment Characteristics

    Google Scholar 

  4. Depth of Closure on Sandy Coasts

    Google Scholar 

  5. Waves

    Google Scholar 

Cross-references

  1. Demography of Coastal Populations

    Google Scholar 

  2. Environmental Quality

    Google Scholar 

  3. Human Impact on Coasts

    Google Scholar 

  4. Water Quality

    Google Scholar 

Cross-references

  1. Africa, Coastal Ecology

    Google Scholar 

  2. Africa, Coastal Geomorphology

    Google Scholar 

  3. Asia, Middle East, Coastal Ecology and Geomorphology

    Google Scholar 

  4. Australia, Coastal Ecology

    Google Scholar 

  5. Australia, Coastal Gemorphology

    Google Scholar 

  6. Coastal Climate

    Google Scholar 

  7. Indian Ocean Coasts, Coastal Ecology

    Google Scholar 

  8. Indian Ocean Coasts, Coastal Geomorphology

    Google Scholar 

  9. Meteorologic Effects on Coasts

    Google Scholar 

  10. Middle America, Coastal Ecology and Geomorphology

    Google Scholar 

  11. North America, Coastal Ecology

    Google Scholar 

  12. North America, Coastal Geomorphology

    Google Scholar 

Cross-references

  1. Beach Nourishment

    Google Scholar 

  2. Beach Use and Behaviors

    Google Scholar 

  3. Coastal Zone Management

    Google Scholar 

  4. Demography of Coastal Populations

    Google Scholar 

  5. Economic Value of Beaches

    Google Scholar 

  6. Human Impact on Coasts

    Google Scholar 

  7. Sea-Level Rise, Effect

    Google Scholar 

  8. Shore Protection Structures

    Google Scholar 

  9. Small Islands

    Google Scholar 

  10. Tourism and Coastal Development

    Google Scholar 

Cross-references

  1. Cheniers

    Google Scholar 

  2. Coastal Subsidence

    Google Scholar 

  3. Geotextile Applications

    Google Scholar 

  4. Hydrology of Coastal Zone

    Google Scholar 

  5. Meteorologic Effects

    Google Scholar 

  6. Polders

    Google Scholar 

  7. Sea-Level Rise Effect

    Google Scholar 

  8. Shore Protection Structures

    Google Scholar 

  9. Storm Surge

    Google Scholar 

  10. Tides

    Google Scholar 

  11. Waves

    Google Scholar 

Cross-references

  1. Bars

    Google Scholar 

  2. Beach Features

    Google Scholar 

  3. Beach Processes

    Google Scholar 

  4. Reflective Beaches

    Google Scholar 

  5. Sandy Coasts

    Google Scholar 

  6. Surf Zone Processes

    Google Scholar 

  7. Waves

    Google Scholar 

Cross-references

  1. Beach Nourishment

    Google Scholar 

  2. Bypassing at Littoral Drift Barriers

    Google Scholar 

  3. Capping of Contaminated Coastal Areas

    Google Scholar 

  4. Engineering Applications of Coastal Geomorphology

    Google Scholar 

  5. Environmental Quality

    Google Scholar 

  6. Human Impact on Coasts

    Google Scholar 

  7. Mining of Coastal Materials

    Google Scholar 

  8. Reclamation

    Google Scholar 

  9. Water Quality

    Google Scholar 

Cross-references

  1. Barrier Islands

    Google Scholar 

  2. Barrier

    Google Scholar 

  3. Bay Beaches

    Google Scholar 

  4. Cross-Shore Sediment Transport

    Google Scholar 

  5. Cuspate Forelands

    Google Scholar 

  6. Longshore Sediment Transport

    Google Scholar 

  7. Spits

    Google Scholar 

Cross-references

  1. Beach Erosion

    Google Scholar 

  2. Beach Features

    Google Scholar 

  3. Debris, Onshore and Offshore

    Google Scholar 

  4. Human Impact on Coasts

    Google Scholar 

  5. Natural Hazards

    Google Scholar 

Cross-references

  1. Beach Features

    Google Scholar 

  2. Beach Ridges

    Google Scholar 

  3. Cheniers

    Google Scholar 

  4. Cross-Shore Sediment Transport

    Google Scholar 

  5. Drift and Swash Alignments

    Google Scholar 

  6. Eolianite

    Google Scholar 

  7. Eolian Processes

    Google Scholar 

  8. Sandy Coasts

    Google Scholar 

Cross-references

  1. Beach Erosion

    Google Scholar 

  2. Beach Processes

    Google Scholar 

  3. Changing Sea Levels

    Google Scholar 

  4. Coastal Changes, Gradual

    Google Scholar 

  5. Coastal Changes, Rapid

    Google Scholar 

  6. Coastal Subsidence

    Google Scholar 

  7. Depth of Closure on Sandy Coasts

    Google Scholar 

  8. Profiling, Beach

    Google Scholar 

  9. Strom Surge

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this entry

Cite this entry

Kelletat, D. et al. (2005). D. In: Schwartz, M.L. (eds) Encyclopedia of Coastal Science. Encyclopedia of Earth Science Series. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3880-1_4

Download citation

Publish with us

Policies and ethics