Skip to main content

Radar: The Cassini Titan Radar Mapper

  • Chapter
The Cassini-Huygens Mission

Abstract

The Cassini RADAR instrument is a multimode 13.8 GHz multiple-beam sensor that can operate as a synthetic-aperture radar (SAR) imager, altimeter, scatterometer, and radiometer. The principal objective of the RADAR is to map the surface of Titan. This will be done in the imaging, scatterometer, and radiometer modes. The RADAR altimeter data will provide information on relative elevations in selected areas. Surfaces of the Saturn’s icy satellites will be explored utilizing the RADAR radiometer and scatterometer modes. Saturn’s atmosphere and rings will be probed in the radiometer mode only. The instrument is a joint development by JPL/NASA and ASI. The RADAR design features significant autonomy and data compression capabilities. It is expected that the instrument will detect surfaces with backscatter coefficient as low as −40 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison, M., Godfrey, D. A., and Beebe, R. F.: 1990, ‘A wave dynamical interpretation of Saturn’s polar hexagon’, Science 247, 1061–1063.

    Google Scholar 

  • Allison, M., Del Genio, A. D., and Zhou, W.: 1995, ‘Richardson number constraints for the Jupiter and outer planet wind regime’, Geophys. Res. Lett. 22, 2957–2960.

    Google Scholar 

  • Caldwell, J., Cunningham, C. C., Anthony, D., White, P. H., Groth, E. J., Hassan, H., et al.: 1992, ‘Titan: Evidence for seasonal change—a comparison of Hubble Space Telescope and Voyager images’, Icarus 96, 1–9.

    Google Scholar 

  • Campbell, D. B., Head, J. W., Harmon, J. K., and Hine, A. A.: 1983, ‘Venus: Identification of banded terrain in the mountains of Ishtar Terra’, Science 221, 644–647.

    Google Scholar 

  • Downs, G. S., Reichley, P. E., and Green, R. R.: 1975, ‘Radar measurements of Martian topography and surface properties: The 1971 and 1973 oppositions’, Icarus 26, 273–312.

    Google Scholar 

  • Dubouloz, N., Raulin, F., Lellouch, E., and Gautier, D.: 1989, ‘Titan’s hypothesized ocean properties: The influence of surface temperature and atmospheric composition uncertainties’, Icarus 82, 81–96

    CAS  Google Scholar 

  • Elachi, C.: 1987, Introduction to the Physics and Techniques of Remote Sensing, New York: Wiley.

    Google Scholar 

  • Elachi, C.: 1988, Spaceborne Radar Remote Sensing: Applications and Techniques, New York: IEEE Press.

    Google Scholar 

  • Elachi, C., Im, E, Roth, L. E., and Werner, C. L.: 1991, ‘Cassini Titan Radar Mapper’, Proc. IEEE 79, 867–880.

    Google Scholar 

  • Engel, S., Lunine, J. I., and Hartmann, W. K.: 1995, ‘Cratering on Titan and implications for Titan’s atmospheric history’, Planet. Space Sci. 43, 1059–1066.

    Google Scholar 

  • Ford, P G., and Pettengill, G. H.: 1992, ‘Venus topography and kilometer-scale slopes’, J. Geophys. Res. 97, 13,103–13,114.

    Google Scholar 

  • Griffith, C. A.: 1993, ‘Evidence for surface heterogeneity on Titan’, Nature 364, 511–514.

    Google Scholar 

  • Griffith, C. A., Owen, T., and Wagener, R.: 1991, ‘Titan’s surface and troposphere, investigated with ground-based, near-infrared observation’, Icarus 93, 362–378.

    CAS  PubMed  Google Scholar 

  • Grossman, A. W.: 1990, ‘Microwave imaging of Saturn’s deep atmosphere and rings’, Doctoral Dissertation, California Institute of Technology.

    Google Scholar 

  • Grossman, A. W., and Muhleman, D. O.: 1992, ‘Observation of Titan’s radio light-curve at 3.5-cm’, Bull. Am. Astron. Soc. 24, 954.

    Google Scholar 

  • Grossman, A. W., Muhleman, D. O., and Berge, G. L.: 1989, ‘High-resolution microwave imaging of Saturn’, Science 245, 1211–1215.

    Google Scholar 

  • Harmon, J. K., and Ostro, S.J.: 1985, ‘Mars: Dual-polarization radar observations with extended coverage’, Icarus 62(1985), 110–128.

    Google Scholar 

  • Hensley, S., and Im, E.: 1993, ‘SAR ambiguity study for the Cassini Radar’, Proceedings of IGARSS’93.

    Google Scholar 

  • Hubbard, W. B., and 45 others: 1993, ‘The occultation of 28 Sgr by Titan’, Astron. Astrophys. 269, 541–563.

    Google Scholar 

  • Im, E., Johnson, W. T. K., and Hensley, S.: 1993, ‘Cassini Radar for remote sensing of Titan — design considerations’, Proceedings of IGARSS’93.

    Google Scholar 

  • Inge, J. L., and Batson, R.M.: 1992, ‘Indexes of maps of the planets and satellites’, NASA TM 4395, 96–98.

    Google Scholar 

  • Johnson, W. T. K.: 1991, ‘Magellan imaging radar mission to Venus’, Proc. IEEE 79, 777.

    Google Scholar 

  • Kuiper, G. P.: 1944, ‘Titan: A satellite with an atmosphere’, Astrophys. J. 100, 378–383.

    Google Scholar 

  • Kwok, R., and Johnson, W. T. K.: 1989, ‘Block adaptive quantization of Magellan SAR data’, IEEE Trans. Geosci. Remote Sens. 27, 375–383.

    Google Scholar 

  • Lemmon, M. T., Karkoscka, E., and Tomasko, M.: 1993, ‘Titan’s rotation: Surface feature observed’, Icarus 103, 329–332.

    Google Scholar 

  • Lemmon, M. T., Karkoscka, E., and Tomasko, M.: 1995, ‘Titan’s rotational light-curve’, Icarus 113, 27–38.

    Google Scholar 

  • Lindal, G. F., Wood, G. E., Hotz, H. B., Sweetnam, D. N., Eshleman, V. R., and Tyler, G. L.: 1983, ‘The atmosphere of Titan: An analysis of the Voyager 1 radio occultation measurements’, Icarus 53, 348–363.

    CAS  Google Scholar 

  • Lorenz, R. D.: 1995a, ‘Raindrops on Titan’, Adv. Space Res. 15, (3)317–(3)320.

    PubMed  Google Scholar 

  • Lorenz, R. D.: 1995b, ‘Cassini mission: Radar sensing of craters on Titan’, Lunar Planet. Sci. XXVI, 775–776.

    Google Scholar 

  • Lorenz, R. D., and Lunine, J. I.: 1996, ‘Erosion on Titan: Past and present’, Icarus 122, 79–91.

    CAS  Google Scholar 

  • Lorenz, R. D., Smith, P. H., Lemmon, M. T., Karkoschka, E., Lockwood, G. W., and Caldwell, J.: 1997, ‘Titan’s north-south asymmetry from HST and Voyager imaging: Comparison with models and ground-based photometry’, Icarus 127, 173–189.

    Google Scholar 

  • Lunine, J. I.: 1993. ‘Does Titan have an ocean? A review of current understanding of Titan’s surface’, Revs. Geophys. 31, 133–149.

    Google Scholar 

  • Lunine, J. I., and Rizk, B.: 1989, ‘Thermal evolution of Titan’s atmosphere’, Icarus 80, 370–389.

    CAS  Google Scholar 

  • Lunine, J. I., Stevenson, D. J., and Yung, Y. L.: 1983, ‘Ethane ocean on Titan’, Science 222, 1229–1230.

    Google Scholar 

  • Mitchell, D. L., Ostro, S. J., Hudson, R. S., Rosema, K. D., Campbell, D. B., Vé1lez, R., et al.: 1996, ‘Radar observations of asteroids 1 Ceres, 2 Pallas, and 4 Vesta’, Icarus 124, 113–133.

    Google Scholar 

  • Muhleman, D. O., Grossman, A. W., Butler, B. J., and Slade, M. A.: 1990, ‘Radar reflectivity of Titan’, Science 248, 975–980.

    Google Scholar 

  • Muhleman, D. O., Grossman, A. W., Slade, M. A., and Butler, B. J.: 1992, ‘The surface of Titan and Titan’s rotation: What is radar telling us?’, Bull. Am. Astron. Soc. 24, 954.

    Google Scholar 

  • Muhleman, D. O., Grossman, A. W., Slade, M. A., and Butler, B. J.: 1993, ‘Titan’s radar reflectivity and rotation’, Bull. Am. Astron. Soc. 25, 1009.

    Google Scholar 

  • Muhleman, D. O., Grossman, A. W., and Butler, B. J.: 1995, ‘Radar investigation of Mars, Mercury, and Titan’, Annu. Rev. Earth Planet. Sci. 23, 337–374.

    CAS  Google Scholar 

  • Ostro, S. J.: 1993, ‘Planetary Radar Astronomy’, Revs. Mod. Phys. 65, 1235–1279.

    Google Scholar 

  • Ostro, S. J., Campbell, D. B., Simpson, R. A., Hudson, R. S., Chandler, J. F, Rosema, K. D., et al.: 1992, ‘Europa, Ganymede, and Callisto: New radar results from Arecibo and Goldstone’, J. Geophys. Res. 97, 18,227–18,244.

    Google Scholar 

  • Pettengill, G. H.: 31978, ‘Physical properties of the planets and satellites from radar observations’, Ann. Rev. Astron. Astrophys. 16, 265–292.

    Google Scholar 

  • Pettengill, G. H., Briscoe, H. W., Evans, J. V., Gehrels, E., Hyde, G. M., Kraft, L. G., Price, R., and Smith, W. B.: 1962, ‘A radar investigation of Venus’, Astron. J. 67, 181–190.

    Google Scholar 

  • Pettengill, G. H., Ford, P. G., Johnson, W. T. K., Raney, K. R., and Soderblom, L. A.: 1991, ‘Magellan: Radar performance and data products’, Science 252, 260–265.

    Google Scholar 

  • Samuelson, R. E., and Mayo, L. A.: 1997, ‘Steady-state model for methane condensation in Titan’s troposphere’, Planet. Space Sci. 45, 949–958.

    CAS  Google Scholar 

  • Saunders, R. S., and 26 others: 1992, ‘The Magellan Mission summary’, J. Geophys. Res. 97, 13,067–13,090.

    Google Scholar 

  • Sen, A. D., Anicich, V. G., and Arakelian, T.: 1992, ‘Dielectric constant of liquid alkanes and hydrocarbon mixtures’, J. Phys. D: Appl. Phys. 25,516–521.

    CAS  Google Scholar 

  • Smith, P. H., and Lemmon, M. T.: 1993, ‘HST images of Titan’, Bull. Am. Astron. Soc. 25, 1105.

    Google Scholar 

  • Smith, P. H., Lemmon, M. T., Lorenz, R. D., Sromovsky, L. A., Caldwell, J. J., and Allison, M. D.: 1996, ‘Titan’s surface, revealed by HST images’, Icarus 119, 336–349.

    Google Scholar 

  • Straty, G. C., and Goodwin, R. D.: 1973, ‘Dielectric constant and polarizability of saturated and compressed fluid methane’, Cryogenicsl3, 712–715.

    Google Scholar 

  • Thomson, W. R., and Squyres, S. W.: 1990, 1Titan and other icy satellites: Dielectric properties of constituent materials and implications for radar sounding’, Icarus 86, 336–354.

    Google Scholar 

  • Toon, O. B., McKay, C. P., Courtin, R., and Ackerman, T. P.: 1988, ‘Methane rain on Titan’, Icarus 75, 255–284.

    CAS  Google Scholar 

  • Tyler, G. L., Eshleman, V. R., Anderson, J. D., Levy, G. S., Lindal, G. F., Wood, G. E., et al.: 1981, ‘Radio science investigations of the Saturn system with Voyager 1: Preliminary results’, Science 212, 201–206.

    CAS  Google Scholar 

  • Tyler, G. L., Simpson, R. A., Maurer, M. J., and Holman, E.: 1992, ‘Scattering properties of the Venusian surface: Preliminary results from Magellan’, J. Geophys. Res. 97, 13,115–13,139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Wall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Elachi, C. et al. (2004). Radar: The Cassini Titan Radar Mapper. In: Russell, C.T. (eds) The Cassini-Huygens Mission. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3874-7_2

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3874-7_2

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3147-2

  • Online ISBN: 978-1-4020-3874-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics