Dispersal of Transgenic Conifer Pollen

  • Gabriel Katul
  • Claire G. Williams
  • Mario Siqueira
  • Davide Poggi
  • Amilcare Porporato
  • Heather McCarthy
  • Ram Oren
Part of the Managing Forest Ecosystems book series (MAFE, volume 9)


Genetically Modify Leaf Area Index Genetically Modify Crop Sonic Anemometer Dispersal Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. AYLOR, D., AND J. PARLANGE. 1975. Ventilation required to entrain small particles from leaves. Plant Physiology 56:97-99.CrossRefPubMedGoogle Scholar
  2. AYLOR, D. E., AND T. K. FLESCH. 2001. Estimating spore release rates using a Lagrangian stochastic simulation model. Journal of Applied Meteorology 40:1196-1208.CrossRefGoogle Scholar
  3. AYLOR, D. E., N. P. SCHULTES, AND E. J. SHIELDS. 2003. An aerobiological framework for assessing cross-pollination in maize. Agricultural and Forest Meteorology 119:111-129.CrossRefGoogle Scholar
  4. AYOTTE, K. W., J. J. FINNIGAN, AND M. R. RAUPACH. 1999. A second-order closure for neutrally stratified vegetative canopy flows. Boundary-Layer Meteorology 90:189-216.CrossRefGoogle Scholar
  5. BALDOCCHI, D., E. FALGE, L. H. GU, R. OLSON, D. HOLLINGER, S. RUNNING, P. ANTHONI, C. BERNHOFER, K. DAVIS, R. EVANS, J. FUENTES, A. GOLDSTEIN, G. KATUL, B. LAW, X. H. LEE, Y. MALHI, T. MEYERS, W. MUNGER, W. OECHEL, K. T. P. U, K. PILEGAARD, H. P. SCHMID, R. VALENTINI, S. VERMA, T. VESALA, K. WILSON, AND S. WOFSY. 2001. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society 82:2415-2434.Google Scholar
  6. BESSEY, C. 1883. Remarkable fall of pine pollen. American Naturalist 17:658.Google Scholar
  7. BOYER, W.D. 1978. Heat accumulation: An easy way to anticipate the flowering of southern pines. Journal of Forestry 76:20-23Google Scholar
  8. BULLOCK, J. M., AND R. T. CLARKE. 2000. Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia 124:506-521.CrossRefGoogle Scholar
  9. CAIN, M. L., R. NATHAN, AND S. A. LEVIN. 2003. Long-distance dispersal. Ecology 84:1943-1944.CrossRefGoogle Scholar
  10. CHRISTEY, M., AND D. WOODFIELD. 2001. Coexistence of genetically modified and non-genetically modified crops. 427, Crop & Food Research Confidential Report, Riverdale, MD.Google Scholar
  11. DE HAAN, P., AND M. W. ROTACH. 1998. A novel approach to atmospheric dispersion modelling: The Puff-Particle Model. Quarterly Journal of the Royal Meteorological Society 124:2771-2792.Google Scholar
  12. DIGIOVANNI, F., P. KEVAN, AND J. ARNOLD. 1996. Lower planetary boundary layer profiles of atmospheric conifer pollen above a seed orchard in northern Ontario, Canada. Forest Ecology and Management 83:87-97.Google Scholar
  13. DIGIOVANNI, F., P. K. PG, AND M. NASR. 1995. Settling velocities of some pollen and spores and their variability. Grana 34:39-44.Google Scholar
  14. ERDTMAN, G. 1937. Pollen grains recovered from the atmosphere over the Atlantic. Medd. Göteborgs Bot. Trädg 12.Google Scholar
  15. FENNING, T. M., AND J. GERSHENZON. 2002. Where will the wood come from? Plantation forests and the role of biotechnology. Trends in Biotechnology 20:291-296.CrossRefPubMedGoogle Scholar
  16. FINNIGAN, J. 2000. Turbulence in plant canopies. Annual Review of Fluid Mechanics 32:519-571.CrossRefGoogle Scholar
  17. GURA, T. 2001. The battlefields of Britain. Nature 412:760-763CrossRefPubMedGoogle Scholar
  18. HAILS, R.S. 2000. Genetically modified plants - the debate continues. Trends Ecol. Evol. 15:14-18.Google Scholar
  19. HENGEVELD, R. 1989.Dynamics of biological invasions. Chapman and Hall, London. 160 p.Google Scholar
  20. HIGGINS, S. I., J. S. CLARK, R. NATHAN, T. HOVESTADT, F. SCHURR, J. M. V. FRAGOSO, M. R. AGUIAR, E. RIBBENS, AND S. LAVOREL. 2003. Forecasting plant migration rates: managing uncertainty for risk assessment. Journal of Ecology 91:341-347.CrossRefGoogle Scholar
  21. HSIEH, C. I., G. KATUL, AND T. CHI. 2000. An approximate analytical model for footprint estimation of scaler fluxes in thermally stratified atmospheric flows. Advances in Water Resources 23:765-772.CrossRefGoogle Scholar
  22. JAROSZ, N., B. LOUBET, B. DURAND, A. MCCARTNEY, X. FOUEILLASSAR, AND L. HUBER. 2003. Field measurements of airborne concentration and deposition rate of maize pollen. Agricultural and Forest Meteorology 119:37-51.CrossRefGoogle Scholar
  23. KATUL, G., B. VIDAKOVIC, AND J. ALBERTSON. 2001. Estimating global and local scaling exponents in turbulent flows using discrete wavelet transformations. Physics of Fluids 13:241-250.CrossRefGoogle Scholar
  24. KATUL, G. G., AND J. D. ALBERTSON. 1998. An investigation of higher-order closure models for a forested canopy. Boundary-Layer Meteorology 89:47-74.CrossRefGoogle Scholar
  25. KATUL, G. G., AND W. H. CHANG. 1999. Principal length scales in second-order closure models for canopy turbulence. Journal of Applied Meteorology 38:1631-1643.CrossRefGoogle Scholar
  26. KATUL, G. G., C. D. GERON, C. I. HSIEH, B. VIDAKOVIC, AND A. B. GUENTHER. 1998. Active turbulence and scalar transport near the forest- atmosphere interface. Journal of Applied Meteorology 37: 1533-1546.CrossRefGoogle Scholar
  27. KATUL, G. G., L. MAHRT, D. POGGI, AND C. SANZ. 2004. One and two equation models for canopy turbulence. Boundary-Layer Meteorology 113:81-109.CrossRefGoogle Scholar
  28. LANNER, R. 1966. Needed: a new approach to the study of pollen dispersion. Silv Genetica 15 50- 52.Google Scholar
  29. LINACRE, N., AND P. ADES. 2004. Estimating isolation distances for genetically modified trees in plantation forestry. Ecological Modelling 179:247-257CrossRefGoogle Scholar
  30. LOOS, C., R. SEPPELT, S. MEIER-BETHKE, J. SCHIEMANN, AND O. RICHTER. 2003. Spatially explicit modelling of transgenic maize pollen dispersal and cross-pollination. Journal of Theoretical Biology 225:241-255.Google Scholar
  31. MANN, C., AND M.L. PLUMER. 2002. Forest biotech edges out of the lab. Science 295:1626-1629.CrossRefPubMedGoogle Scholar
  32. MASSMAN, W. J., AND J. C. WEIL. 1999. An analytical one-dimensional second-order closure model of turbulence statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure. Boundary-Layer Meteorology 91:81-107.CrossRefGoogle Scholar
  33. MESSEGUER, J. 2003. Gene flow assessment in transgenic plants. Plant Cell, Tissue and Organ Culture. 73:201-212.CrossRefGoogle Scholar
  34. MOYES, C. L., J. M. LILLEY, C. A. CASAIS, S. G. COLE, P. D. HAEGER, AND P. J. DALE. 2002. Barriers to gene flow from oilseed rape (Brassica napus) into populations of Sinapis arvensis. Molecular Ecology 11:103-112.CrossRefPubMedGoogle Scholar
  35. NATHAN, R., G. G. KATUL, H. S. HORN, S. M. THOMAS, R. OREN, R. AVISSAR, S. W. PACALA, AND S. A. LEVIN. 2002. Mechanisms of long-distance dispersal of seeds by wind. Nature 418:409-413.CrossRefPubMedGoogle Scholar
  36. NATHAN, R., G. PERRY, J. T. CRONIN, A. E. STRAND, AND M.L. CAIN. 2003. Methods for estimating long-distance dispersal. Oikos 103:261-273.CrossRefGoogle Scholar
  37. NICHOLS, R., AND G. HEWITT. 1994. The genetic consequences of long-distance dispersal during colonization. Heredity 72:312-317.CrossRefGoogle Scholar
  38. OGTR, 2001. Risk analysis framework for license applications to the office of the gene technology regulator. Office of the Gene Technology Regulator, Canberra, Australia.Google Scholar
  39. OKUBO, A., AND S. A. LEVIN. 1989. A Theoretical Framework for Data-Analysis of Wind Dispersal of Seeds and Pollen. Ecology 70:329-338.CrossRefGoogle Scholar
  40. OREN, R., D. S. ELLSWORTH, K. H. JOHNSEN, N. PHILLIPS, B. E. EWERS, C. MAIER, K. V. R. SCHAFER, H.MCCARTHY, G. HENDREY, S. G. MCNULTY, AND G. G. KATUL. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469-472.Google Scholar
  41. PARKER, S., AND T. BLUSH. 1996. Quantifying pollen production of loblolly pine (Pinus taeda L.) seed orchard clones. 163, Westvaco Forest Research Report.Google Scholar
  42. PHILLIPS, N., A. NAGCHAUDHURI, R. OREN, AND G. KATUL. 1997. Time constant for water transport in loblolly pine trees estimated from time series of evaporative demand and stem sapflow. Trees, Structure and Function 11:412-419.Google Scholar
  43. POGGI, D., J. D. ALBERTSON, AND G. G. KATUL. 2005. Scalar dispersion within a model canopy: Measurements and Lagrangian models. Advances in Water Resources. In press. POGGI, D., A. PORPORATO, L. RIDOLFI, J. ALBERTSON, AND G. KATUL. 2004a. The effect of vegetation density on canopy sublayer turbulence. Boundary-Layer Meteorology 111:565-587.Google Scholar
  44. POGGI, D., G. G. KATUL, AND J. D. ALBERTSON. 2004b. Momentum transfer and turbulent kinetic energy budgets within a dense model canopy. Boundary Layer Meteorology 111:589-614.CrossRefGoogle Scholar
  45. POGGI, D., J. D. ALBERTSON, AND G. G. KATUL. 2004c. A note on the contribution of dispersive fluxes to momentum transfer within canopies. Boundary Layer Meteorology 111: 615-621.CrossRefGoogle Scholar
  46. POPE, S. B. 2000. Turbulent flows. Cambridge University Press, Cambridge.Google Scholar
  47. PRESS, W., S. TEUKOLSKY, W. VETTERLING, AND B. FLANNERY. 1992. Numerical Recipes in Fortran: The Art of Scientific Computing. Cambridge University Press, Cambridge.Google Scholar
  48. RAUPACH, M. R. 1983. Near-Field Dispersion from Instantaneous Sources in the Surface-Layer. Boundary-Layer Meteorology 27:105-113.CrossRefGoogle Scholar
  49. RAUPACH, M. R. 1987. A Lagrangian analysis of scalar transfer in vegetation canopies. Quarterly Journal of the Royal Meteorological Society 113:107-120.CrossRefGoogle Scholar
  50. RAUPACH, M. R. 1989a. Applying Lagrangian Fluid-Mechanics to Infer Scalar Source Distributions from Concentration Profiles in Plant Canopies. Agricultural and Forest Meteorology 47:85-108.CrossRefGoogle Scholar
  51. RAUPACH, M. R. 1989b. A practical lagrangian method for relating scalar concentrations to source distributions in vegetation canopies. Quarterly Journal of the Royal Meteorological Society 115: 609-632.CrossRefGoogle Scholar
  52. RAUPACH, M. R. 1989c. A Practical Lagrangian Method for Relating Scalar Concentrations to Source Distributions in Vegetation Canopies. Quarterly Journal of the Royal Meteorological Society 115:609-632.CrossRefGoogle Scholar
  53. RAUPACH, M. R., J. J. FINNIGAN, AND Y. BRUNET. 1996. Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. Boundary-Layer Meteorology 78:351-382.CrossRefGoogle Scholar
  54. RAUPACH, M. R., AND R. H. SHAW. 1982. Averaging Procedures for Flow within Vegetation Canopies. Boundary-Layer Meteorology 22:79-90.CrossRefGoogle Scholar
  55. REYNOLDS, A. M. 1998a. Comments on the Universality of the Lagrangian velocity structure function constant (C-0) across different kinds of turbulence,. Boundary-Layer Meteorology 89:161-170.CrossRefGoogle Scholar
  56. REYNOLDS, A. M. 1998b. A Lagrangian stochastic model for the trajectories of particle pairs and its application to the prediction of concentration variance within plant canopies. Boundary-Layer Meteorology 88:467-478.CrossRefGoogle Scholar
  57. REYNOLDS, A. M. 1998c. Modelling particle dispersion within a ventilated airspace. Fluid Dynamics Research 22:139-152.CrossRefGoogle Scholar
  58. REYNOLDS, A. M. 1998d. On the formulation of Lagrangian stochastic models of scalar dispersion within plant canopies. Boundary-Layer Meteorology 86:333-344.CrossRefGoogle Scholar
  59. REYNOLDS, A. M. 2000. On the formulation of Lagrangian stochastic models for heavy-particle trajectories. Journal of Colloid and Interface Science 232:260-268.CrossRefPubMedGoogle Scholar
  60. REYNOLDS, A. M., AND J. E. COHEN. 2002. Stochastic simulation of heavy-particle trajectories in turbulent flows. Physics of Fluids 14:342-351.CrossRefGoogle Scholar
  61. RIEGER, M. A., M. LAMOND, C. PRESTON, S. B. POWLES, AND R. T. ROUSH. 2002. Pollen-mediated movement of herbicide resistance between commercial canola fields. Science 296:2386-2388.CrossRefPubMedGoogle Scholar
  62. RIGHTER, F., AND J. DUFFIELD. 1951. A summary of interspecific crosses in the genus Pinus made at the Institute of Forest Genetics. J. Hered. 42:75-80.PubMedGoogle Scholar
  63. RODEAN, H. 1996. Stochastic Lagrangian Models of Turbulent Diffusion. American Meteorological Society, Boston, 83 pages.Google Scholar
  64. SAWFORD, B. L., AND F. M. GUEST. 1991. Lagrangian Statistical Simulation of the Turbulent Motion of Heavy-Particles. Boundary-Layer Meteorology 54:147-166.CrossRefGoogle Scholar
  65. SIQUEIRA, M., AND G. KATUL. 2002. Estimating heat sources and fluxes in thermally stratified canopy flows using higher-order closure models. Boundary-Layer Meteorology 103:125-142.CrossRefGoogle Scholar
  66. SIQUEIRA, M., G. KATUL, AND C. T. LAI. 2002. Quantifying net ecosystem exchange by multilevel ecophysiological and turbulent transport models. Advances in Water Resources 25:1357-1366.CrossRefGoogle Scholar
  67. SIQUEIRA, M., C. T. LAI, AND G. KATUL. 2000. Estimating scalar sources, sinks, and fluxes in a forest canopy using Lagrangian, Eulerian, and hybrid inverse models. Journal of Geophysical Research-Atmospheres 105:29475-29488.CrossRefGoogle Scholar
  68. SMOUSE, P. E., R. J. DYER, R. D. WESTFALL, AND V. L. SORK. 2001. Two-generation analysis of pollen flow across a landscape. I. Male gamete heterogeneity among females. Evolution 55:260-271.Google Scholar
  69. STOCKMARR, A. 2002. The distribution of particles in the plane dispersed by a simple 3-dimensional diffusion process. Journal of Mathematical Biology 45:461-469.CrossRefPubMedGoogle Scholar
  70. STRAUSS, S., W. H. ROTTMAN, A. BRUNNER, L.A. SHEPPARD. 1995. Genetic engineering of reproductive sterility in forest trees. Molecular Breeding 1:5-26.Google Scholar
  71. STRAUSS, S., M.M. CAMPBELL, S. N. PRYOR, P. COVENTRY, AND J. BURLEY. 2001. Plantation Certification and Genetic Engineering: Ban on Research is Counter Productive. Journal of Forestry December: 4-7.Google Scholar
  72. THOMSON, D. J. 1987. Criteria for the selection of stochastic-models of particle trajectories in turbulent flows. Journal of Fluid Mechanics 180:529-556.CrossRefGoogle Scholar
  73. TUSKAN, G., T. TSCHAPLINSKI, B. FRANC, AND N. EDWARDS. 1992. UV-B radiation reduces germination capacity of loblolly pine and red spruce pollen. in In Proc. 12th North American Forest Biology Workshop. Ontario Ministry of Natural Resources, Sault Ste. Marie, Ontario.Google Scholar
  74. WILSON, J. 1988. A Second Order Closure Model for Flow through Vegetation. Boundary-Layer Meteorology 42:371-392.CrossRefGoogle Scholar
  75. WILSON, J. D., AND B. L. SAWFORD. 1996. Review of Lagrangian stochastic models for trajectories in the turbulent atmosphere. Boundary-Layer Meteorology 78:191-210.CrossRefGoogle Scholar
  76. WILSON, N., AND R. SHAW. 1977. A Higher Order Closure Model for Canopy Flow. Journal of Applied Meteorology 16:1198-1205.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Gabriel Katul
    • 1
  • Claire G. Williams
    • 2
  • Mario Siqueira
    • 3
  • Davide Poggi
    • 4
  • Amilcare Porporato
    • 5
  • Heather McCarthy
    • 6
  • Ram Oren
    • 7
  1. 1. Nicholas School of the Environment and Earth SciencesDuke UniversityBox 90328USA
  2. 2.Department of BiologyDuke UniversityBox 90338USA
  3. 3.Nicholas School of the Environment and Earth SciencesDuke UniversityBox 90328USA
  4. 4.Trasporti ed Infrastrutture Civili Politecnico di TorinoDipartimento di IdraulicaItaly
  5. 5.Department of Civil and Environmental EngineeringDuke UniversityBox 90287 USA
  6. 6.Nicholas School of the Environment and Earth Sciences>Duke UniversityBox 90328 USA
  7. 7.Nicholas School of the Environment and Earth SciencesDuke UniversityBox 90328USA

Personalised recommendations