Skip to main content

Theoretical and Finite Element Models for Coupled Electro-Mechano-Chemical Transport in Soft Tissues

  • Conference paper
IUTAM Symposium on Physicochemical and Electromechanical Interactions in Porous Media

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 125))

  • 891 Accesses

Abstract

A general theoretical and finite element model (FEM) for soft tissue structures is described including arbitrary constitutive laws based upon a continuum view of the material as a mixture or porous medium saturated by an incompressible fluid and containing charged mobile species. Example problems demonstrate coupled electro-mechano-chemical transport and deformations in FEMs of layered materials subjected to mechanical, electrical and chemical “loading” while undergoing small or large strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lai, W. M., Hou, J.S., and Mow, V.C. (1991) A triphasic theory for the swelling and deformation behaviors of articular cartilage. Journal of Biomechanical Engineering 113, 245–258

    Google Scholar 

  2. Gu, W.Y., Lai, W.M, and Mow, V.C. (1998) A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: passive transport and swelling behaviors. Journal of Biomechanical Engineering 120, 169–180

    Google Scholar 

  3. Levenston, M.E., Frank, E.H., and Grodzinsky, A.J. (1999) Electrokinetic and poroelastic coupling during finite deformations of charged porous media. Journal of Applied Mechanics 66, 323–333

    Google Scholar 

  4. Simon, B.R., Radtke, G.A., Rigby, Williams, S. K. and Liu, Z.P. (2002) Extended ‘LMPH-ETS’ finite element models for coupled mechano-electro-chemical transport in soft tissues. ASME BED IMECE 2002-32604, Scott, E., editor

    Google Scholar 

  5. Simon, B.R., Kaufmann, M.V., Liu, J., and Baldwin, A.L. (1998) Porohyperelastictransport-swelling theory, material properties, and finite element models for large arteries. International Journal of Solids and Structures 35, 5021–5031

    Article  Google Scholar 

  6. Sun, D.N., Gu, W.Y., Guo, X.E., Lai, W.M., and Mow, V.C. (1999) A mixed finite element formulation of triphasic mechano-electrochemical theory for charged, hydrated biological soft tissues. International Journal for Numerical Methods in Engineering 45, 1375–1402

    Article  Google Scholar 

  7. Simon, B.R. and Kaufmann, M.V. (1990) Finite element models for arterial wall mechanics and transport. Biofluid Methods in Vascular and Pulmonary Systems, Biomechanical Systems Techniques and Applications, Leondes, C. T. editor, IV, CRC Press, New York, 5.1–5.32

    Google Scholar 

  8. Snijders, H., Huyghe, J.M., and Janssen, J.D. (1995) Triphasic finite element model for swelling porous media. International Journal for Numerical Methods 20, 1039–1046

    Google Scholar 

  9. Zienkiewicz, O.C. (1979) The Finite Element Method. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Simon, B.R., Radtke, G.A., Liu, Z.P., Rigby, P.H., Williams, S.K. (2005). Theoretical and Finite Element Models for Coupled Electro-Mechano-Chemical Transport in Soft Tissues. In: Gladwell, G.M.L., Huyghe, J., Raats, P.A., Cowin, S.C. (eds) IUTAM Symposium on Physicochemical and Electromechanical Interactions in Porous Media. Solid Mechanics and Its Applications, vol 125. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3865-8_7

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3865-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3864-8

  • Online ISBN: 978-1-4020-3865-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics