Skip to main content

Ontogenetics of QTL: the genetic architecture of trichome density over time in Arabidopsis thaliana

  • Chapter
  • 1421 Accesses

Part of the Georgia Genetics Review III book series (GEGR,volume 3)

Abstract

Although much is known about the molecular genetic basis of trichome development in Arabidopsis thaliana, less is known about the underlying genetic basis of continuous variation in a trait known to be of adaptive importance: trichome density. The density of leaf trichomes is known to be a major determinant of herbivore damage in natural populations of A. thaliana and herbivores are a significant selective force on genetic variation for trichome density. A number of developmental changes occur during ontogeny in A. thaliana, including changes in trichome density. I used multiple interval mapping (MIM) analysis to identify QTL responsible for trichome density on both juvenile leaves and adult leaves in replicate, independent trials and asked whether those QTL changed with ontogeny. In both juvenile and adult leaves, I detected a single major QTL on chromosome 2 that explained much of the genetic variance. Although additional QTL were detected, there were no consistent differences in the genetic architecture of trichome density measured on juvenile and adult leaves. The finding of a single QTL of major effect for a trait of known adaptive importance suggests that genes of major effect may play an important role in adaptation.

Key words

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ågren, J. & D.W. Schemske, 1994. Evolution of trichome number in a naturalized population of Brassica rapa. Am. Nat. 143: 1–13.

    Google Scholar 

  • Basten, C.J., B.S. Weir & Z.-B. Zeng, 1994. Zmap-a QTL cartographer, pp. 65–66 in Proceedings of the 5th World Congress on Genetics Applied to Livestock Production: Computing Strategies and Software, edited by C. Smith, J.S. Gavora, B. Benkel, J. Chesnais, W. Fairfull, J.P. Gibson, B.W. Kennedy and E.B. Burnside. Organizing Committee, 5th World Congress on Genetics Applied to Livestock Production, Guelph, Ontario, Canada.

    Google Scholar 

  • Basten, C.J., B.S. Weir & Z.-B. Zeng, 2004. QTL Cartographer, Version 2.0. Department of Statistics, North Carolina State University, Raleigh, NC, USA.

    Google Scholar 

  • Barton, N.H. & P.D. Keightley, 2002. Understanding quantitative genetic variation. Nat. Rev. Genet. 3: 11–21

    Google Scholar 

  • Beavis, W.D., 1994. The power and deceit of QTL experiments: lessons from comparative QTL studies, pp. 255–266 in Proc. Corn and Sorghum Industry Research Conference, American Seed Trade Association, Washington, DC, USA.

    Google Scholar 

  • Beavis, W.D., 1998. QTL analyses: power, precision, and accuracy, pp. 145–162 in Molecular Dissection of Complex Traits, edited by A.H. Paterson. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Coley, P.D., 1980. Effects of leaf age and plant life history patterns on herbivory. Nature 284: 545–546.

    Google Scholar 

  • Copenhaver, G.P., Browne, W.E. & D. Preuss, 1998. Assaying genome-wide recombination and centromere functions with Arabidopsis tetrads. Proc. Natl. Acad. Sci. USA 9: 247–252.

    Google Scholar 

  • Doebley, J., A. Stec & L. Hubbard, 1997. The evolution of apical dominance in maize. Nature 386: 485–488.

    PubMed  Google Scholar 

  • Elle, E.,N.M. van Dam & J. D. Hare, 1999. Cost of glandular trichomes, a ‘resistance’ character in Datura wrightii Regel (Solanaceae). Evolution 53: 22–35.

    Google Scholar 

  • Esch, J.J., D.G. Oppenheimer & M.D. Marks, 1994. Characterization of a weak allele of the GLI gene of Arabidopsis thaliana. Plant Mol. Biol. 24: 203–207.

    PubMed  Google Scholar 

  • Fisher, R.A., 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford, UK.

    Google Scholar 

  • Frary, A., T.C. Nesbitt, A. Frary, S. Grandillo, E. van der Knaap, B. Cong, J. Liu, J. Meller, R. Elber, K.B. Alpert & S.D. Tanksley, 2000. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289: 85–88.

    PubMed  Google Scholar 

  • Herman, P.L. & M.D. Marks, 1989. Trichome development in Arabidopsis thaliana. II. Isolation and complementation of the GLABROUS1 gene. Plant Cell 1: 1051–1055.

    PubMed  Google Scholar 

  • Houle, D., 1992. Comparing evolvability and variability of quantitative traits. Genetics 130: 195–204

    PubMed  Google Scholar 

  • Hülskamp, M., S. Misera & G. Jurgens, 1994. Genetic dissection of trichome cell development in Arabidopsis. Cell 76: 555–566.

    PubMed  Google Scholar 

  • Hülskamp, M. & A. Schnittger, 1998. Spatial regulation of trichome formation in Arabidopsis thaliana. Semin. Cell Dev. Biol. 9: 213–220.

    PubMed  Google Scholar 

  • Hülskamp, M. & V. Kirik, 2000. Trichome differentiation and morphogenesis in Arabidopsis, pp. 237–260 in Advances in Botanical Research incorporating Advances in Plant Pathology, Vol. 31, Plant Trichomes edited by D.L. Hallahan & J.C. Gray. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Janzen, D.H., 1979. New horizons in the biology of plant defenses, pp. 331–350 in Herbivores: Their Interaction with Secondary Plant Metabolites, edited by D.H. Janzen & G.A. Rosenthal. Academic Press, NY, USA.

    Google Scholar 

  • Jiang, C. & Z.-B. Zeng, 1995. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127.

    PubMed  Google Scholar 

  • Johanson, U., J. West, C. Lister, S. Michaels, R. Amasino & C. Dean, 2000. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290: 344–347.

    PubMed  Google Scholar 

  • Johnson, H.B., 1975. Plant pubescence: an ecological perspective. Bot. Rev. 41: 233–258.

    Google Scholar 

  • Juenger, T., M. Purugganan & T.F.C. Mackay, 2000. Quantitative trait loci for floral morphology in Arabidopsis thaliana. Genetics 156: 1379–1392.

    PubMed  Google Scholar 

  • Kao, C.-H. & Z.-B. Zeng, 1997. General formulae for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci. Biometrics 53: 653–665.

    PubMed  Google Scholar 

  • Kao, C.-H., Z.-B. Zeng & R.D. Teasdale, 1999. Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216.

    PubMed  Google Scholar 

  • Karban R. & J.S. Thaler, 1999. Plant phase change and resistance to herbivory. Ecology 80: 510–517.

    Google Scholar 

  • Kaul, S. et al., 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.

    PubMed  Google Scholar 

  • Krischik, V.A. & R.F. Denno, 1983. Individual, population, and geographic patterns in plant defense, pp. 463–512 in Variable Plants and Herbivores in Natural and Managed Systems, edited by R.F. Denno & M.S. McClure. Academic Press, NY, USA.

    Google Scholar 

  • Lande, R., 1983. The response to selection on major and minor mutations affecting a metrical trait. Heredity 50: 47–65.

    Google Scholar 

  • Lander, E.S. & D. Botstein, 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.

    PubMed  Google Scholar 

  • Lander, E., P. Green, J. Abrahamson, A. Barlow, M. Daley, S. Lincoln, L. Newbury, 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181.

    CrossRef  PubMed  Google Scholar 

  • Larkin, J.C., D.G. Oppenheimer, S. Pollock & M.D. Marks, 1993. Arabidopsis GLABROUS1 gene requires downstream sequences for function. Plant Cell 5: 1739–1748.

    PubMed  Google Scholar 

  • Larkin, J.C., D.G. Oppenheimer, A.M. Lloyd, E.T. Paparozzi, & M.D. Marks, 1994. Roles of the GLABROUSI and TRANSPARENT TESTA GLABRA genes in Arabidopsis trichome development. Plant Cell 6: 1065–1076.

    PubMed  Google Scholar 

  • Larkin, J.C., N. Young, M. Prigge & M.D. Marks, 1996. The control of trichome spacing and number in Arabidopsis. Development 122: 997–1005.

    PubMed  Google Scholar 

  • Larkin, J.C., J.D. Walker, A.C. Bolognesi-Winfield, J.C. Gray, & A.R. Walker, 1999. Allele-specific interactions between ttg and gl1 during trichome development in Arabidopsis thaliana. Genetics 151: 1591–1604.

    PubMed  Google Scholar 

  • Lawrence R., B.M. Potts & T.G. Whitham. 2003. Relative importance of plant ontogeny, host genetic variation, and leaf age for a common herbivore. Ecology 84: 1171–1178.

    Google Scholar 

  • Lawson, E. & R.S. Poethig, 1995. Shoot development in plants: time for a change. Trends Genet. 11: 263–268.

    Google Scholar 

  • Levin, D.A., 1973. The role of trichomes in plant defenses. Q. Rev. Biol. 48: 3–15.

    Google Scholar 

  • Lister, C. & C. Dean, 1993. Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. Plant J. 4: 745–750.

    Google Scholar 

  • Lynch, M. & B. Walsh, 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland, MA, USA.

    Google Scholar 

  • Mackay, T.F.C., 2001. Quantitative trait loci in Drosophila. Nat. Rev. Genet. 2: 11–20.

    PubMed  Google Scholar 

  • Marks, M.D., 1997. Molecular genetic analysis of trichome development in Arabidopsis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 137–163.

    PubMed  Google Scholar 

  • Marks, M.D. & K.A. Feldmann, 1989. Trichome development in Arabidopsis thaliana. I. T-DNA tagging of the GLA-BROUS1 gene. Plant Cell 1: 1043–1050.

    PubMed  Google Scholar 

  • Martínez-Zapater, J.M., J.A. Jarillo, M. Cruz-Alvarez, M. Rolddn & J. Salinas, 1995. Arabidopsis late-flowering fve mutants are affected in both vegetative and reproductive development. Plant J. 7: 543–551.

    Google Scholar 

  • Mauricio, R., 1998. Costs of resistance to natural enemies in field populations of the annual plant, Arabidopsis thaliana. Am. Nat. 151: 20–28.

    Google Scholar 

  • Mauricio, R., 2001a. An ecological genetic approach to the study of coevolution. Am. Zool. 41: 916–927.

    Google Scholar 

  • Mauricio, R., 2001b. Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat. Rev. Genet. 2: 370–381.

    PubMed  Google Scholar 

  • Mauricio, R., M.D. Bowers & F.A. Bazzaz, 1993. Pattern of leaf damage affects fitness of the annual plant, Raphanus sativus (Brassicaceae). Ecology 74: 2066–2071.

    Google Scholar 

  • Mauricio, R. & M.D. Rausher, 1997. Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution 51: 1435–1444.

    Google Scholar 

  • Orr, H.A. & J.A. Coyne, 1992. The genetics of adaptation: a reassessment. Am. Nat. 140: 725–742.

    Google Scholar 

  • Paterson, A.H., S. Damon, J.D. Hewitt, D. Zamir, H.D. Rabinowitch, S.E. Lincoln, E.S. Lander & S.D. Tanksley, 1991. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127: 181–197.

    PubMed  Google Scholar 

  • Payne, C.T., F. Zhang, & A.M. Lloyd, 2000. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GLI and TTGI. Genetics 156: 1349–1362.

    PubMed  Google Scholar 

  • Poethig, R.S., 1990. Phase change and the regulation of shoot morphogenesis in plants. Science 250: 923–930

    Google Scholar 

  • Poethig, R.S., 1997. Leaf morphogenesis in flowering plants. Plant Cell 9: 1077–1087.

    PubMed  Google Scholar 

  • Poethig R.S., 2003. Phase change and the regulation of developmental timing in plants. Science 301: 334–336.

    PubMed  Google Scholar 

  • Rerie, W.G., K.A. Feldmann, & M.D. Marks, 1994. The GLABRA2 gene encodes a home domain protein required for normal trichome development in Arabidopsis. Genes Dev. 8: 1388–1399.

    PubMed  Google Scholar 

  • Schnittger, A., G. Jurgens, & M. Hülskamp, 1998. Tissue layer and organ specificity of trichome formation are regulated by GLABRAI and TRIPTYCHON in Arabidopsis. Development 125: 2283–2289.

    PubMed  Google Scholar 

  • Stinchcombe, J.R., 2002. Fitness consequences of cotyledon and mature-leaf damage in the ivyleaf morning glory. Oecologia 131: 220–226.

    Google Scholar 

  • Szymanski, D.B., R.A. Jilk, S.M. Pollock, & M.D. Marks, 1998a. Control of GL2 expression in Arabidopsis leaves and trichomes. Development 125: 1161–1171.

    PubMed  Google Scholar 

  • Szymanski, D.B., D.A. Klis, J.C. Larkin, & M.D. Marks, 1998b. cotl: a regulator of Arabidopsis trichome initiation. Genetics 149: 565–577.

    PubMed  Google Scholar 

  • Szymanski, D.B., & M.D. Marks, 1998. GLABROUS1 overex-pression and TRIPTYCHON alter the cell cycle and trichome cell fate in Arabidopsis. Plant Cell 10: 2047–2062.

    PubMed  Google Scholar 

  • Szymanski, D.B., A.M. Lloyd, & M.D. Marks, 2000. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends Plant Sci. 5: 214–219.

    PubMed  Google Scholar 

  • van Ooijen, J., 1992. Accuracy of mapping quantitative trait loci in autogamous species. Theor. Appl. Genet. 84: 803–811.

    Google Scholar 

  • Wada, T., T. Tachibana, Y. Shimura, & K. Okada, 1997. Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC. Science 277: 1113–1116.

    PubMed  Google Scholar 

  • Zeng, Z.-B., 1993. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc. Natl. Acad. Sci. USA 90: 10972–10976.

    PubMed  Google Scholar 

  • Zeng, Z.-B., 1994. Precision mapping of quantitative trait loci. Genetics 136: 1457–1468.

    PubMed  Google Scholar 

  • Zeng, Z.-B., C. Kao, & C.J. Basten, 1999. Estimating the genetic architecture of quantitative traits. Genet. Res. 74:279–289.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rodney Mauricio

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Mauricio, R. (2005). Ontogenetics of QTL: the genetic architecture of trichome density over time in Arabidopsis thaliana. In: Mauricio, R. (eds) Genetics of Adaptation. Georgia Genetics Review III, vol 3. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3836-4_8

Download citation

Publish with us

Policies and ethics