Abstract
Quantitative trait loci (QTL) mapping has been used in a number of evolutionary studies to study the genetic basis of adaptation by mapping individual QTL that explain the differences between differentiated populations and also estimating their effects and interaction in the mapping population. This analysis can provide clues about the evolutionary history of populations and causes of the population differentiation. QTL mapping analysis methods and associated computer programs provide us tools for such an inference on the genetic basis and architecture of quantitative trait variation in a mapping population. Current methods have the capability to separate and localize multiple QTL and estimate their effects and interaction on a quantitative trait. More recent methods have been targeted to provide a comprehensive inference on the overall genetic architecture of multiple traits in a number of environments. This development is important for evolutionary studies on the genetic basis of multiple trait variation, genotype by environment interaction, host—parasite interaction, and also microarray gene expression QTL analysis.
Key words
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Basten, C., B.S. Weir & Z.-B. Zeng, 1995–2004. QTL Cartographer. Department of Statistics, North Carolina State University, Raleigh, NC (http://statgen.ncsu.edu/qtlcart/cartographer.html).
Brem, R.B., G. Yvert, R. Clinton & L. Kruglyak, 2002. Genetic dissection of transcriptional regulation in budding yeast. Science 296: 752–755.
Broman, K.W. & T.P. Speed, 2002. A model selection approach for the identification of quantitative trait loci in experimental crosses. J. R. Stat. Soc. B 64: 641–656.
Carlborg, O., L. Andersson & B. Kinghorn, 2000. The use of a genetic algorithm for simultaneous mapping of multiple interacting quantitative trait loci. Genetics 155: 2003–2010.
Eaves, I.A., L.S. Wicker, G. Ghandour, P.A. Lyons, L.B. Peterson, J.A. Todd & R.J. Glynne, 2002. Combining mouse congenic strains and microarray gene expression analyses to study a complex trait: the NOD model of Type 1 diabetes. Genome Res. 12: 232–243.
Falconer, D.S., 1952. The problem of environment and selection. Am. Nat. 86: 293–298.
Jiang, C. & Z.-B. Zeng, 1995. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140: 1111–1127.
Jiang, C. & Z.-B. Zeng, 1997. Mapping quantitative trait loci with dominant and missing markers in various crosses from two inbred lines. Genetica 101: 47–58.
Kao, C.-H. & Z.-B. Zeng, 1997. General formulae for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm. Biometrics 53: 653–665.
Kao, C.-H., Z.-B. Zeng & R. Teasdale, 1999. Multiple interval mapping for quantitative trait loci. Genetics 152: 1023–1216.
Lander, E.S. & D. Botstein, 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.
Liu, J., J.M. Mercer, L.F. Stam, G.C. Gibson, Z.-B. Zeng & C.C. Laurie, 1996. Genetic analysis of a morphological shape difference in the male genitalia of Drosophila simulans and D. mauritiana. Genetics 142: 1129–1145.
Nakamichi, R., Y. Ukai & H. Kishino, 2001. Detection of closely linked multiple quantitative trait loci using a genetic algorithm. Genetics 158: 463–475.
Mackay, T.F.C., 2001. Quantitative trait loci in Drosophila. Nat. Rev. Genet. 2: 11–20.
Mauricio, R., 2001. Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat. Rev. Genet. 2: 370–381.
Satagopan, J.M., B.S. Yandell, M.A. Newton & T.C. Osborn, 1996. A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics 144: 805–816.
Schadt, E.E., S.A. Monks, T.A. Drake, A.J. Lusis, N. Che, V. Colinayo, T.G. Ruff, S.B. Milligan, J.R. Lamb, G. Cavet, P.S. Linsley, M. Mao, R.B. Stoughton & S.H. Friend. 2003. Genetics of gene expression surveyed in maize, mouse and man. Nature 422: 297–302.
Sen, S. & G.A. Churchill, 2001. A statistical framework for quantitative trait mapping. Genetics 159: 371–387.
Sillanpaa, M.J. & E. Arjas, 1998. Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics 148: 1373–1388.
Wang, S., C. Basten & Z-.B Zeng, 1999–2004. WINDOWS QTL Cartographer. Department of Statistics, North Carolina State University, Raleigh, NC (http://statgen.ncsu.edu/qtlcart/cartographer.html).
Weber, K.E., 1990. Selection on wing allometry in Drosophila melanogaster. Genetics 126: 975–989.
Weber, K., R. Eisman, S. Higgins, L. Morey, A. Patty, M. Tausek & Z.-B. Zeng, 2001. An analysis of polygenes affecting wing shape on chromosome 2 in Drosophila melanogaster. Genetics 159: 1045–1057.
Weber, K., R. Eisman, L. Morey, A. Patty, J. Sparks, M. Tausek & Z.-B. Zeng, 1999. An analysis of polygenes affecting wing shape on chromosome 3 in Drosophila melanogaster. Genetics 153: 773–786.
Zeng, Z.-B., 1994. Precision mapping of quantitative trait loci. Genetics 136: 1457–1468.
Zeng, Z.-B., C.-H. Kao & C.J. Basten, 1999. Estimating the genetic architecture of quantitative traits. Genet. Res. 74: 279–289.
Zeng, Z.-B., J. Liu, L.F. Stam, C.-H. Kao, J.M. Mercer & C.C. Laurie, 2000. Genetic architecture of a morphological shape difference between two Drosophila species. Genetics 154: 299–310.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2005 Springer
About this chapter
Cite this chapter
Zeng, ZB. (2005). QTL mapping and the genetic basis of adaptation: recent developments. In: Mauricio, R. (eds) Genetics of Adaptation. Georgia Genetics Review III, vol 3. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3836-4_4
Download citation
DOI: https://doi.org/10.1007/1-4020-3836-4_4
Received:
Accepted:
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-3476-3
Online ISBN: 978-1-4020-3836-5
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)
