Skip to main content

QTL mapping and the genetic basis of adaptation: recent developments

  • Chapter

Part of the Georgia Genetics Review III book series (GEGR,volume 3)

Abstract

Quantitative trait loci (QTL) mapping has been used in a number of evolutionary studies to study the genetic basis of adaptation by mapping individual QTL that explain the differences between differentiated populations and also estimating their effects and interaction in the mapping population. This analysis can provide clues about the evolutionary history of populations and causes of the population differentiation. QTL mapping analysis methods and associated computer programs provide us tools for such an inference on the genetic basis and architecture of quantitative trait variation in a mapping population. Current methods have the capability to separate and localize multiple QTL and estimate their effects and interaction on a quantitative trait. More recent methods have been targeted to provide a comprehensive inference on the overall genetic architecture of multiple traits in a number of environments. This development is important for evolutionary studies on the genetic basis of multiple trait variation, genotype by environment interaction, host—parasite interaction, and also microarray gene expression QTL analysis.

Key words

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Basten, C., B.S. Weir & Z.-B. Zeng, 1995–2004. QTL Cartographer. Department of Statistics, North Carolina State University, Raleigh, NC (http://statgen.ncsu.edu/qtlcart/cartographer.html).

    Google Scholar 

  • Brem, R.B., G. Yvert, R. Clinton & L. Kruglyak, 2002. Genetic dissection of transcriptional regulation in budding yeast. Science 296: 752–755.

    PubMed  Google Scholar 

  • Broman, K.W. & T.P. Speed, 2002. A model selection approach for the identification of quantitative trait loci in experimental crosses. J. R. Stat. Soc. B 64: 641–656.

    Google Scholar 

  • Carlborg, O., L. Andersson & B. Kinghorn, 2000. The use of a genetic algorithm for simultaneous mapping of multiple interacting quantitative trait loci. Genetics 155: 2003–2010.

    PubMed  Google Scholar 

  • Eaves, I.A., L.S. Wicker, G. Ghandour, P.A. Lyons, L.B. Peterson, J.A. Todd & R.J. Glynne, 2002. Combining mouse congenic strains and microarray gene expression analyses to study a complex trait: the NOD model of Type 1 diabetes. Genome Res. 12: 232–243.

    PubMed  Google Scholar 

  • Falconer, D.S., 1952. The problem of environment and selection. Am. Nat. 86: 293–298.

    Google Scholar 

  • Jiang, C. & Z.-B. Zeng, 1995. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140: 1111–1127.

    PubMed  Google Scholar 

  • Jiang, C. & Z.-B. Zeng, 1997. Mapping quantitative trait loci with dominant and missing markers in various crosses from two inbred lines. Genetica 101: 47–58.

    PubMed  Google Scholar 

  • Kao, C.-H. & Z.-B. Zeng, 1997. General formulae for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm. Biometrics 53: 653–665.

    PubMed  Google Scholar 

  • Kao, C.-H., Z.-B. Zeng & R. Teasdale, 1999. Multiple interval mapping for quantitative trait loci. Genetics 152: 1023–1216.

    Google Scholar 

  • Lander, E.S. & D. Botstein, 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.

    PubMed  Google Scholar 

  • Liu, J., J.M. Mercer, L.F. Stam, G.C. Gibson, Z.-B. Zeng & C.C. Laurie, 1996. Genetic analysis of a morphological shape difference in the male genitalia of Drosophila simulans and D. mauritiana. Genetics 142: 1129–1145.

    PubMed  Google Scholar 

  • Nakamichi, R., Y. Ukai & H. Kishino, 2001. Detection of closely linked multiple quantitative trait loci using a genetic algorithm. Genetics 158: 463–475.

    PubMed  Google Scholar 

  • Mackay, T.F.C., 2001. Quantitative trait loci in Drosophila. Nat. Rev. Genet. 2: 11–20.

    PubMed  Google Scholar 

  • Mauricio, R., 2001. Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat. Rev. Genet. 2: 370–381.

    PubMed  Google Scholar 

  • Satagopan, J.M., B.S. Yandell, M.A. Newton & T.C. Osborn, 1996. A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics 144: 805–816.

    PubMed  Google Scholar 

  • Schadt, E.E., S.A. Monks, T.A. Drake, A.J. Lusis, N. Che, V. Colinayo, T.G. Ruff, S.B. Milligan, J.R. Lamb, G. Cavet, P.S. Linsley, M. Mao, R.B. Stoughton & S.H. Friend. 2003. Genetics of gene expression surveyed in maize, mouse and man. Nature 422: 297–302.

    PubMed  Google Scholar 

  • Sen, S. & G.A. Churchill, 2001. A statistical framework for quantitative trait mapping. Genetics 159: 371–387.

    PubMed  Google Scholar 

  • Sillanpaa, M.J. & E. Arjas, 1998. Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics 148: 1373–1388.

    PubMed  Google Scholar 

  • Wang, S., C. Basten & Z-.B Zeng, 1999–2004. WINDOWS QTL Cartographer. Department of Statistics, North Carolina State University, Raleigh, NC (http://statgen.ncsu.edu/qtlcart/cartographer.html).

    Google Scholar 

  • Weber, K.E., 1990. Selection on wing allometry in Drosophila melanogaster. Genetics 126: 975–989.

    PubMed  Google Scholar 

  • Weber, K., R. Eisman, S. Higgins, L. Morey, A. Patty, M. Tausek & Z.-B. Zeng, 2001. An analysis of polygenes affecting wing shape on chromosome 2 in Drosophila melanogaster. Genetics 159: 1045–1057.

    PubMed  Google Scholar 

  • Weber, K., R. Eisman, L. Morey, A. Patty, J. Sparks, M. Tausek & Z.-B. Zeng, 1999. An analysis of polygenes affecting wing shape on chromosome 3 in Drosophila melanogaster. Genetics 153: 773–786.

    PubMed  Google Scholar 

  • Zeng, Z.-B., 1994. Precision mapping of quantitative trait loci. Genetics 136: 1457–1468.

    PubMed  Google Scholar 

  • Zeng, Z.-B., C.-H. Kao & C.J. Basten, 1999. Estimating the genetic architecture of quantitative traits. Genet. Res. 74: 279–289.

    PubMed  Google Scholar 

  • Zeng, Z.-B., J. Liu, L.F. Stam, C.-H. Kao, J.M. Mercer & C.C. Laurie, 2000. Genetic architecture of a morphological shape difference between two Drosophila species. Genetics 154: 299–310.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rodney Mauricio

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Zeng, ZB. (2005). QTL mapping and the genetic basis of adaptation: recent developments. In: Mauricio, R. (eds) Genetics of Adaptation. Georgia Genetics Review III, vol 3. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3836-4_4

Download citation

Publish with us

Policies and ethics