Skip to main content

Testing hypotheses regarding the genetics of adaptation

  • Chapter
  • 1421 Accesses

Part of the Georgia Genetics Review III book series (GEGR,volume 3)

Abstract

Many of the hypotheses regarding the genetics of adaptation require that one know specific details about the genetic basis of complex traits, such as the number and effects of the loci involved. Developments in molecular biology have made it possible to create relatively dense maps of markers that can potentially be used to map genes underlying specific traits. However, there are a number of reasons to doubt that such mapping will provide the level of resolution necessary to specifically address many evolutionary questions. Moreover, evolutionary change is built upon the substitution of individual mutations, many of which may now be cosegregating in the same allele. In order for this developing area not to become a mirage that traps the efforts of an entire field, the genetic dissection of adaptive traits should be conducted within a strict hypothesis-testing framework and within systems that promise a reasonable chance of identifying the specific genetic changes of interest. Continuing advances in molecular technology may lead the way here, but some form of genetic testing is likely to be forever required.

Key words

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barton, N.H. & M. Turelli, 1989. Evolutionary quantitative genetics: How little do we know? Annu. Rev. Genet. 23: 337–370.

    PubMed  Google Scholar 

  • Beavis, W.D., 1994. The power and deceit of QTL experiments: lessons from comparative QTL studies, pp. 252–268 in 49th Annual Corn and Sorghum Research Conference, edited by American Seed Trade Association, Washington, DC.

    Google Scholar 

  • Beavis, W.D., 1998. QTL analyses: power, precision, and accuracy, pp. 145–162 in Molecular Dissection of Complex Traits, edited by A.H. Paterson. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Bost, B., D. de Vienne, F. Hospital, L. Moreau & C. Dillmann, 2001. Genetic and nongenetic bases for the L-shaped distribution of quantitative trait loci effects. Genetics 157: 1773–1787.

    PubMed  Google Scholar 

  • Botstein, D. & N. Risch, 2003. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat. Genet. 33S: 228–237.

    Google Scholar 

  • Castle, W.E., 1921. An improved method of estimating the number of genetic factors concerned in cases of blending inheritance. Science 54: 223.

    Google Scholar 

  • Charlesworth, B., 1990. Optimization models, quantitative genetics, and mutation. Evolution 44: 520–538.

    Google Scholar 

  • Cheverud, J.M., E.J. Routman & D.J. Irschick, 1997. Plieo-tropic effects of individual gene loci on mandibular morphology. Evolution 51: 2006–2016.

    Google Scholar 

  • Coyne, J.A., 1983. Genetic basis of difference in genital morphology among three sibling species of Drosophila. Evolution 37: 1101–1118.

    Google Scholar 

  • Crow, J.F., 1957. Genetics of insect resistance to chemicals. Ann. Rev. Entomol. 2: 227–246.

    Google Scholar 

  • Davidson, E.H., 2001. Genomic Regulatory Systems: Development and Evolution. Academic Press, New York.

    Google Scholar 

  • Doebly, J., A. Stec & C. Gustus, 1995. Teosinte branched1 and the origin of mazie: evidence for epistasis and the evolution of dominance. Genetics 141: 333–346.

    PubMed  Google Scholar 

  • Felsenstein, J., 1977. Multivariate normal genetic models with a finite number of loci, in proceedings of the Second International Conference on Quantitative Genetics, edited by Iowa State University Press, Ames, IA.

    Google Scholar 

  • Fisher, R.A., 1918. The correlations between relatives on the supposition of Mendelian inheritance. Trans. Roy. Soc. Edinb. 52: 399–433.

    Google Scholar 

  • Gibson, G., 2002. Microarrays in ecology and evolution: a preview. Mol. Ecol. 11: 17–24.

    PubMed  Google Scholar 

  • Glazier, A.M., J.H. Nadeau & T.J. Aitman, 2002. Finding genes that underlie complex traits. Science 298: 2345–2349.

    PubMed  Google Scholar 

  • Greenberg, A.J., J.R. Moran, J.A. Coyne & C.I. Wu, 2003. Ecological adaptation during incipient speciation revealed by precise gene replacement. Science 302: 1754–1757.

    PubMed  Google Scholar 

  • Jovelin, R., B.C. Ajie & P.C. Phillips, 2003. Molecular evolution and quantitative variation for chemosensory behaviour in the nematode genus Caenorhabditis. Mol. Ecol. 12: 1325–1337.

    PubMed  Google Scholar 

  • Juenger, T., M. Purugganan & T.F. Mackay, 2000. Quantitative trait loci for floral morphology in Arabidopsis thaliana. Genetics 156: 1379–1392.

    Google Scholar 

  • Kao, C.H. & Z.B. Zeng, 2002. Modeling epistasis of quantitative trait loci using Cockerham’s model. Genetics 160: 1243–1261.

    PubMed  Google Scholar 

  • Khoury, M., T.H. Beaty & B.H. Cohen, 1993. Fundamentals of Genetic Epidemiology. Oxford University Press, New York.

    Google Scholar 

  • Lande, R., 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution 30: 314–334.

    Google Scholar 

  • Lande, R., 1981. The minimum number of genes contributing to quantitative variation between and within populations. Genetics 99: 544–553.

    Google Scholar 

  • Lande, R., 1988. Quantitative genetics and evolutionary theory, pp. 71–84 in Proceeding of the Second International Conference on Quantitative Genetics, edited by Sinauer,Sunderland, Mass.

    Google Scholar 

  • Lander, E.S. & N.J. Schork, 1994. Genetic dissection of complex traits. Science 265: 2037–2048.

    PubMed  Google Scholar 

  • Laurie, C.C., J.R. True, J. Liu & J.M. Mercer, 1997. An introgression analysis of quantitative trait loci that contribute to a morphological difference between Drosophila simulans and D. mauritiana. Genetics 145: 339–348.

    PubMed  Google Scholar 

  • Lebreton, C.M., P.M. Visscher, C.S. Haley, A. Semikhodskii & S.A. Quarrie, 1998. A nonparametric bootstrap method for testing close linkage vs. pleiotropy of coincident quantitative trait loci. Genetics 150: 931–943.

    PubMed  Google Scholar 

  • Leips, J. & T.F. Mackay, 2000. Quantitative trait loci for life span in Drosophila melanogaster: interactions with genetic background and larval density. Genetics 155: 1773–1788.

    PubMed  Google Scholar 

  • Lewontin, R.C., 1974. The Genetic Basis of Evolutionary Change. Columbia University Press, New York.

    Google Scholar 

  • Lewontin, R.C., 1991. Twenty-five years ago in Genetics: electrophoresis in the development of evolutionary genetics: milestone or millstone? Genetics 128: 657–662.

    PubMed  Google Scholar 

  • Long, A.D., S.L. Mullaney, T.F. Mackay & C.H. Langley, 1996. Genetic interactions between naturally occurring alleles at quantitative trait loci and mutant alleles at candidate loci affecting bristle number in Drosophila melanogaster. Genetics 144: 1497–1510.

    PubMed  Google Scholar 

  • Long, A.D., R.F. Lyman, C.H. Langley & T.F. Mackay, 1998. Two sites in the Delta gene region contribute to naturally occurring variation in bristle number in Drosophila melanogaster. Genetics 149: 999–1017.

    PubMed  Google Scholar 

  • Long, A.D., R.F. Lyman, A.H. Morgan, C.H. Langley & T.F. Mackay, 2000. Both naturally occurring insertions of transposable elements and intermediate frequency polymorphisms at the achaete-scute complex are associated with variation in bristle number in Drosophila melanogaster. Genetics 154: 1255–1269.

    PubMed  Google Scholar 

  • Lyman, R.F. & T.F. Mackay, 1998. Candidate quantitative trait loci and naturally occurring phenotypic variation for bristle number in Drosophila melanogaster: the Delta-Hairless gene region. Genetics 149: 983–998.

    PubMed  Google Scholar 

  • Mackay, T.F.C. & C.H. Langley, 1990. Molecular and phenotypic variation in the achaete-scute region of Drosophila melanogaster. Nature 348: 64–66.

    PubMed  Google Scholar 

  • Mackay, T.F.C., 2001a. Quantitative trait loci in Drosophila. Nat. Rev. Genet. 2: 11–20.

    PubMed  Google Scholar 

  • Mackay, T.F.C., 2001b. The genetic architecture of quantitative traits. Annu. Rev. Genet. 35: 303–339.

    PubMed  Google Scholar 

  • Nachman, M.W., H.E. Hoekstra & S.L. D’Agostino, 2003. The genetic basis of adaptive melanism in pocket mice. Proc. Natl. Acad. Sci. USA 100: 5268–5273.

    PubMed  Google Scholar 

  • Noor, M.A., A.L. Cunningham & J.C. Larkin, 2001. Consequences of recombination rate variation on quantitative trait locus mapping studies. Simulations based on the Drosophila melanogaster genome. Genetics 159: 581–588.

    PubMed  Google Scholar 

  • Oleksiak, M.F., G.A. Churchill & D.L. Crawford, 2002. Variation in gene expression within and among natural populations. Nat. Genet. 32: 261–266.

    PubMed  Google Scholar 

  • Orr, H.A., 1998. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52: 935–949.

    Google Scholar 

  • Orr, H.A., 2002. The population genetics of adaptation: the adaptation of DNA sequences. Evolution 56: 1317–1330.

    PubMed  Google Scholar 

  • Otto, S.P. & C.D. Jones, 2000. Detecting the undetected: estimating the total number of loci underlying a quantitative trait. Genetics 156: 2093–2107.

    PubMed  Google Scholar 

  • Pasyukova, E.G., C. Vieira & T.F. Mackay, 2000. Deficiency mapping of quantitative trait loci affecting longevity in Drosophila melanogaster. Genetics 156: 1129–1146.

    PubMed  Google Scholar 

  • Peichel, C.L., K.S. Nereng, K.A. Ohgi, B.L. Cole, P.F. Colosimo, C.A. Buerkle, D. Schluter & D.M. Kingsley, 2001. The genetic architecture of divergence between three-spine stickleback species. Nature 414: 901–905.

    PubMed  Google Scholar 

  • Phillips, P.C., 1998. The language of gene interaction. Genetics 149: 1167–1171.

    PubMed  Google Scholar 

  • Phillips, P.C., 1999. From complex traits to complex alleles. Trends Genet. 15: 6–8.

    PubMed  Google Scholar 

  • Provine, W.B., 1971. The Origins of Theoretical Population Genetics. The University of Chicago Press, Chicago.

    Google Scholar 

  • Remington, D.L., M.C. Ungerer & M.D. Purugganan, 2001. Map-based cloning of quantitative trait loci: progress and prospects. Genet. Res. 78: 213–218.

    PubMed  Google Scholar 

  • Siegal, M.L. & D.L. Hartl, 1998. An experimental test for lineage-specific position effects on alcohol dehydrogenase (Adh) genes in Drosophila. Proc. Natl. Acad. Sci. USA 95: 15513–15518.

    PubMed  Google Scholar 

  • Slatkin, M., 1970. Selection and polygenic characters. Proc. Natl. Acad. Sci. USA 66: 87–93.

    PubMed  Google Scholar 

  • Stam, L.F. & C.C. Laurie, 1996. Molecular dissection of a major gene effect on a quantitative trait: the level of alcohol dehydrogenase expression in Drosophila melanogaster. Genetics 144: 1559–1564.

    PubMed  Google Scholar 

  • Steinmetz, L.M., H. Sinha, D.R. Richards, J.I. Spiegelman, P.J. Oefner, J.H. McCusker & R.W. Davis, 2002. Dissecting the architecture of a quantitative trait locus in yeast. Nature 416: 326–330.

    PubMed  Google Scholar 

  • Stern, D.L., 2000. Evolutionary developmental biology and the problem of variation. Evolution 54: 1079–1091.

    PubMed  Google Scholar 

  • The C. elegans Sequencing Consortium, 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282: 2012–2018.

    Google Scholar 

  • Vaughn, T.T., L.S. Pletscher, A. Peripato, K. King-Ellison, E. Adams, C. Erikson & J.M. Cheverud, 1999. Mapping quantitative trait loci for murine growth: a closer look at genetic architecture. Genet. Res. 74: 313–22.

    PubMed  Google Scholar 

  • Wayne, M.L. & L.M. McIntyre, 2002. Combining mapping and arraying: an approach to candidate gene identification. Proc. Natl. Acad. Sci. USA 99: 14903–14906.

    PubMed  Google Scholar 

  • Weinig, C., M.C. Ungerer, L.A. Dorn, N.C. Kane, Y. Toyonaga, S.S. Halldorsdottir, T.F. Mackay, M.D. Purugganan & J. Schmitt, 2002. Novel loci control variation in reproductive timing in Arabidopsis thaliana in natural environments. Genetics 162: 1875–1884.

    PubMed  Google Scholar 

  • Wright, S., 1968. Evolution and the Genetics of Populations. Vol. 1. Genetic and Biometric Foundations. University of Chicago Press, Chicago.

    Google Scholar 

  • Zeng, Z.B., D. Houle & C.C. Cockerham, 1990. How Informative is Wright’s estimator of the number of genes affecting a quantitative character? Genetics 126: 235–247.

    PubMed  Google Scholar 

  • Zeng, Z.B., 1992. Correcting the bias of Wright’s estimates of the number of genes affecting a quantitative character: a further improved method. Genetics 131: 987–1001.

    PubMed  Google Scholar 

  • Zeng, Z.B., J. Liu, L.F. Stam, C.H. Kao, J.M. Mercer & C.C. Laurie, 2000. Genetic architecture of a morphological shape difference between two Drosophila species. Genetics 154: 299–310.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rodney Mauricio

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Phillips, P.C. (2005). Testing hypotheses regarding the genetics of adaptation. In: Mauricio, R. (eds) Genetics of Adaptation. Georgia Genetics Review III, vol 3. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3836-4_3

Download citation

Publish with us

Policies and ethics