Skip to main content

Parallel genotypic adaptation: when evolution repeats itself

  • Chapter
Genetics of Adaptation

Part of the book series: Georgia Genetics Review III ((GEGR,volume 3))

Abstract

Until recently, parallel genotypic adaptation was considered unlikely because phenotypic differences were thought to be controlled by many genes. There is increasing evidence, however, that phenotypic variation sometimes has a simple genetic basis and that parallel adaptation at the genotypic level may be more frequent than previously believed. Here, we review evidence for parallel genotypic adaptation derived from a survey of the experimental evolution, phylogenetic, and quantitative genetic literature. The most convincing evidence of parallel genotypic adaptation comes from artificial selection experiments involving microbial populations. In some experiments, up to half of the nucleotide substitutions found in independent lineages under uniform selection are the same. Phylogenetic studies provide a means for studying parallel genotypic adaptation in non-experimental systems, but conclusive evidence may be difficult to obtain because homoplasy can arise for other reasons. Nonetheless, phylogenetic approaches have provided evidence of parallel genotypic adaptation across all taxonomic levels, not just microbes. Quantitative genetic approaches also suggest parallel genotypic evolution across both closely and distantly related taxa, but it is important to note that this approach cannot distinguish between parallel changes at homologous loci versus convergent changes at closely linked non-homologous loci. The finding that parallel genotypic adaptation appears to be frequent and occurs at all taxonomic levels has important implications for phylogenetic and evolutionary studies. With respect to phylogenetic analyses, parallel genotypic changes, if common, may result in faulty estimates of phylogenetic relationships. From an evolutionary perspective, the occurrence of parallel genotypic adaptation provides increasing support for determinism in evolution and may provide a partial explanation for how species with low levels of gene flow are held together.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreev, D., M. Kreitman, T.W. Phillips, R.W. Beeman & R.H. ffrench-Constant, 1999. Multiple origins of cyclodiene insecticide resistance in Tribolium castaneum (Coleoptera: Tenbrionidae). J. Mol. Evol. 48: 615–624.

    PubMed  Google Scholar 

  • Barlow, M. & B.G. Hall, 2002. Predicting evolutionary potential: in vitro evolution accurately reproduces natural evolution of the TEM β-lactamase. Genetics 160: 823–832.

    PubMed  Google Scholar 

  • Barlow, M. & B.G. Hall, 2003. Experimental prediction of the natural evolution of antibiotic resistance. Genetics 163:1237–1241.

    PubMed  Google Scholar 

  • Bernasconi, P., A.R. Woodworth, B.A. Rosen, M.V. Subramanian & D.L. Siehl, 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 270: 17381–17385.

    PubMed  Google Scholar 

  • Brown, E.G., H. Liu, L. Chang Kit, S. Baird & M. Nesrallah, 2001. Pattern of mutation in the genome of influenza A virus on adaptation to increased virulence in the mouse lung: identification of functional themes. Proc. Natl. Acad. Sci. U.S.A. 98: 6883–6888.

    PubMed  Google Scholar 

  • Bull, J.J., M.R. Badgett, H.A. Wichman, J.P. Huelsenbeck, D.M. Hillis, A. Gulati, C. Ho & I.J. Molineux, 1997. Exceptional convergent evolution in a virus. Genetics 147:1497–1507.

    PubMed  Google Scholar 

  • Chen, L., A.L. DeVries & C.-H.C. Cheng, 1997. Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish & Arctic cod. Proc. Natl. Acad. Sci. U.S.A. 94:3817–3822.

    PubMed  Google Scholar 

  • Coyne, J.A. & R. Lande, 1985. The genetic basis of species differences in plants. Am. Nat. 126: 141–145.

    Google Scholar 

  • Crill, W.D., H.A. Wichman & J.J. Bull, 2000. Evolutionary reversals during viral adaptation to alternating hosts. Genetics 154: 27–37.

    PubMed  Google Scholar 

  • Cunningham, C.W., K. Jeng, J. Husti, M. Badgett, I.J. Molineux, D.M. Hillis & J.J. Bull, 1997. Parallel molecular evolution of deletions & nonsense mutations in bacteriophage T7. Mol. Biol. Evol. 14: 113–116.

    PubMed  Google Scholar 

  • Doolittle, R.F., 1994. Convergent evolution: the need to be explicit. Trends Biochem. Sci. 19: 15–18.

    PubMed  Google Scholar 

  • Downie, S.R. & J.D. Palmer, 1992. Use of chloroplast DNA rearrangements in reconstructing plant phylogeny, pp. 14–35 in Molecular Systematics of Plants, edited by P.S. Soltis, D.E. Soltis & J.J. Doyle. Chapman & Hall, N.Y.

    Google Scholar 

  • Elard, L., A.M. Comes & J.F. Humbert, 1996. Sequences of B-tubulin cDNA from benzimidazole-susceptible and-resistant strains of Teladorsagia cirumcincta, a nematode parasite of small ruminants. Mol. Biochem. Parasitol. 79: 249–253.

    PubMed  Google Scholar 

  • Endler, J.A., 1986. Natural Seleciton in the Wild. Princeton University Press, Princeton.

    Google Scholar 

  • Ehrlich, P.R. & P.H. Raven, 1969. Differentiation of populations. Science 165: 1228–1232.

    PubMed  Google Scholar 

  • Fatokun, C.A., D.I. Menancio-Hautea, D. Danesh & N.D. Young, 1992. Evidence for orthologous seed weight genes in cowpea & mung bean based on RFLP mapping. Genetics 132: 841–846.

    PubMed  Google Scholar 

  • ffrench-Constant, R.H., 1994. The molecular & population genetics of cyclodiene insecticide resistance. Insect Bicochem. Mol. Biol. 24: 335–345.

    Google Scholar 

  • Forey, P.L., C.J. Humphries, I.L. Kitching, R.W. Scotland, D.J. Siebert & D.M. Williams, 1992. Cladistics. Oxford University Press, NY.

    Google Scholar 

  • Goodnight, C.J., 2000. Quantitative trait loci & gene interaction: the quantitative genetics of metapopulations. Heredity 84: 587–598.

    PubMed  Google Scholar 

  • Gottlieb, L.D., 1984. Genetics & morphological evolution in plants. Am. Nat. 123: 681–709.

    Google Scholar 

  • Grant, V., 1980. Gene flow and the homogeneity of species populations. Biol. Zentralbl. 99: 157–169.

    Google Scholar 

  • Haldane, J.B.S., 1932. The Causes of Evolution. Longmans Green, London.

    Google Scholar 

  • Hilu, K.W., 1983. The role of single-gene mutations in the evolution of flowering plants. Evol. Biol. 36: 97–128.

    Google Scholar 

  • Hu, F.Y., D.Y. Tao, E. Sacks, B.Y. Fu, P. Xu, J. Li, Y. Yang, K. McNally, G.S. Khush, A.H. Paterson & Z.-K. Li, 2003. Convergent evolution of perenniality in rice & sorghum. Proc. Natl. Acad. Sci. U.S.A. 100: 4050–4054.

    PubMed  Google Scholar 

  • Johanson, U., J. West, C. Lister, S. Michaels, R. Amasino & C. Dean, 2001. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290: 344–347.

    Google Scholar 

  • Jouvin-Marche, E., A. Cuddihy, S. Butler, J.N. Hansen, W.M. Fitch & S. Rudikoff, 1988. Modern Evolution of a single-copy gene: the immunoglobulin Ck locus in wild mice. Mol. Biol. Evol. 5: 500–511.

    PubMed  Google Scholar 

  • Kermarrec, N., F. Roubinet, P.-A. Apoil & A. Blancher, 1999. Comparison of allele O sequences of the human & non-human primate ABO system. Immunogenetics 49: 517–526.

    PubMed  Google Scholar 

  • Kriener, K., C. O’hUigin, H. Tichy & J. Klein, 2000. Convergent evolution of major histocompatibility complex molecules in humans & New World monkeys. Immunogenetics 51: 169–178.

    PubMed  Google Scholar 

  • Lande, R., 1983. The response to selection on major & minor mutations affecting a metrical trait. Heredity 50: 47–65.

    Google Scholar 

  • Levin, B.R., V. Perrot & N. Walker, 2000. Compensatory mutations, antibiotic resistance & the population genetics of adaptive evolution in bacteria. Genetics 154: 985–997.

    PubMed  Google Scholar 

  • Levin, D.A., 2000. The Origin, Expansion, & Demise of Plant Species. Oxford University Press, NY.

    Google Scholar 

  • Levin, D.A., 2001. The recurrent origin of plant races & species. Syst. Bot. 26: 197–204.

    Google Scholar 

  • Liao, H., T. McKenzie & R. Hageman, 1986. Isolation of a thermostable enzyme variant by cloning & selection in a thermophile. Proc. Natl. Acad. Sci. U.S.A. 83: 576–580.

    PubMed  Google Scholar 

  • Low, A.S., F.M. MacKenzie, I.M. Gould & I.R. Booth, 2001. Protected environments allow parallel evolution of a bacterial pathogen in a patient subjected to long-term antibiotic therapy. Mol. Microbiol. 42: 619–630.

    PubMed  Google Scholar 

  • Lynch, M. & J.S. Conery, 2000. The evolutionary fate & consequences of duplicate genes. Science 290: 1151–1155.

    PubMed  Google Scholar 

  • Malcuit, I., W. De Jong, D.C. Baulcombe, D.C. Shields & T.A. Kavanagh, 2000. Acquisition of multiple virulence/avirulence determinants by potato virus X (PVX) has occurred through convergent evolution rather than through recombination. Virus Genes 20: 165–172.

    PubMed  Google Scholar 

  • Mauricio, R., 2001. Mapping quantitative trait loci in plants: uses & caveats for evolutionary biology. Nat. Rev. Genet. 2:370–381.

    PubMed  Google Scholar 

  • Molla, A., M. Korneyeva, Q. Gao, S. Vasavanonda, P.J. Schipper, et al., 1996. Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. Nat. Med. 2: 760–766.

    PubMed  Google Scholar 

  • Morris, A., J.K. Bowmaker & D.M. Hunt, 1993. The molecular basis of a spectral shift in the rhodopsins of two species of squid from different photic environments. Proc. R. Soc. Lond. Ser. B Biol. Sci. 254: 233–240.

    Google Scholar 

  • Ohno, S., 1970. Evolution by Gene Duplication. Springer, Berlin.

    Google Scholar 

  • O’hUigin, C., A. Sato & J. Klein, 1997. Evidence for convergent evolution of A & B blood group antigens in primates. Hum. Genet. 101: 141–148.

    PubMed  Google Scholar 

  • Palacios, E., L. Digilio, H.M. McClure, Z. Chen, P.A. Marx, M.A. Goldsmith & R.M. Grant, 1998. Parallel evolution of CCR5-null phenotypes in humans & in a natural host of simian immunodeficiency virus. Curr. Biol. 8: 943–946.

    PubMed  Google Scholar 

  • Paterson, A.H., Y.-R. Lin, Z. Li, K.F. Schertz, J.F. Doebley, S.R.M. Pinson, S.-C. Liu, J.W. Stansel & J.E. Irivine, 1995. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269: 1714–1718.

    Google Scholar 

  • Reid, S.D., C.J. Herbelin, A.C. Bumbaugh, R.K. Selander & T.S. Whittam, 2000. Parallel evolution of virulence in pathogenic Escherichia coli. Nature 406: 64–67.

    PubMed  Google Scholar 

  • Rice, W.R. & E.E. Hostert, 1993. Laboratory experiments on speciation: what have we learned in 40 years? Evolution 47:1637–1653.

    Google Scholar 

  • Riehle, M.M., A.F. Bennett & A.D. Long, 2001. Genetic architecture of thermal adaptation in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 98: 525–530.

    PubMed  Google Scholar 

  • Rieseberg, L.H., B. Sinervo, C.R. Linder, M.C. Ungerer & D.M. Arias, 1996. Role of gene interactions in hybrid speciation: evidence from ancient & experimental hybrids. Science 272: 741–745.

    PubMed  Google Scholar 

  • Rieseberg, L.H. & J.M. Burke, 2001. The biological reality of species: gene flow, selection, & collective evolution. Taxon 50: 47–67.

    Google Scholar 

  • Romero-Herrera, A.E., H. Lehmann, K.A. Josey & A.E. Friday, 1978. On the evolution of myoglobin. Philos. Trans. R Soc. Lond. Ser. B Biol. Sci. 283: 61–163.

    Google Scholar 

  • Rundle, H.D., L. Nagel, J.W. Boughman & D. Schluter, 2000. Natural selection & parallel speciation in sympatric sticklebacks. Scinece 287: 306–308.

    Google Scholar 

  • Saitou, N. & F. Yamamoto, 1997. Evolution of primate ABO blood group genes & their homologous genes. Mol. Biol. Evol. 14: 399–411.

    PubMed  Google Scholar 

  • Schat, H., R. Voous & E. Kuiper, 1996. Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations & subspecies of Silene vulagaris. Evolution 50: 1888–1895.

    Google Scholar 

  • Schluter, D., 1996. Adaptive radiation along genetic lines of least resistance. Evolution 50: 1766–1774.

    Google Scholar 

  • Schluter, D., 2001. Ecology & the origin of species. Trends Ecol. Evol. 16: 372–380.

    PubMed  Google Scholar 

  • Shafqat, J., M. El-Ahmad, O. Danielsson, M.C. Martinez, B. Persson, X. Pares & H. Jornvall, 1996. Pea formaldehyde-active class III alcohol dehydrogenase: common derivation of the plant & animal forms but not of the corresponding ethanol-active forms (classes I & P). Proc. Natl. Acad. Sci. U.S.A. 93: 5595–5599.

    PubMed  Google Scholar 

  • Shyue, S.-K., D. Hewett-Emmett, H.G. Sperling, D.M. Hunt, J.K. Bowmaker, J.D. Mollon & W.-H. Li, 1995. Adaptive evolution of color vision genes in higher primates. Science 269: 1265–1267.

    PubMed  Google Scholar 

  • Simpson, G.G., 1961. Principles of Animal Taxonomy. New York, Columbia University Press.

    Google Scholar 

  • Soltis, P.S. & D.S. Soltis, 1991. Multiple origins of the allotetraploid Tragopogon mirus (Compositae): rDNA evidence. Syst. Bot. 16: 407–413.

    Google Scholar 

  • Stewart, C.-B., J.W. Schilling & A.C. Wilson, 1987. Adaptive evolution in the stomach lysozymes of foregut fermenters. Nature 330: 401–404.

    PubMed  Google Scholar 

  • Sucena, E., I. Delon, I. Jones, F. Payre & D.L. Stern, 2003. Regulatory evolution of shavenbaby/ovo underlies multiple cases of morphological parallelism. Nature 424: 935–938.

    PubMed  Google Scholar 

  • Tanksley, S.D., 1993. Mapping polygenes. Annual Rev. Genet. 27: 205–233.

    Google Scholar 

  • Templeton, A.R., 1989. The meaning of species & speciation: a genetic perspective, pp. 327 in Speciation & Its Conse-quences, edited by D. Otte & J.A. Endler. Sunderland, MA.

    Google Scholar 

  • Ungerer, M., (2000) Selection, genetic envrionment & adaptive evolution: an analysis of microevolutionary dynamics in experimental plant populations. Ph.D. dissert. Indiana Univ., Bloomington.

    Google Scholar 

  • Wade, M.J. & C.J. Goodnight, 1998. Perspective: the theories of Fisher & Wright in the context of metapopulations: when nature does many small experiments. Evolution 52: 1537–1553.

    Google Scholar 

  • Wells, R.S., 1996. Excessive homoplasy in an evolutionarily constrained protein. Proc. R. Soc. Lond. Ser. B Biol. Sci. 263: 393–400.

    Google Scholar 

  • Wichman, H.A., M.R. Badgett, L.A. Scott, C.M. Boulianne & J.J. Bull, 2001. Different trajectories of parallel evolution during viral adaptation. Science 285: 422–424.

    Google Scholar 

  • Yokoyama, R. & S. Yokoyama, 1990. Convergent evolution of the red-& green-like visual pigment genes in fish, Astyanax fasciatus & human. Proc. Natl. Acad. Sci. U.S.A. 87: 9315–9318.

    PubMed  Google Scholar 

  • Zhang, J. & S. Kumar, 1997. Detection of convergent & parallel evolution at the amino acid sequence level. Mol. Biol. Evol. 14: 527–536.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rodney Mauricio

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Wood, T.E., Burke, J.M., Rieseberg, L.H. (2005). Parallel genotypic adaptation: when evolution repeats itself. In: Mauricio, R. (eds) Genetics of Adaptation. Georgia Genetics Review III, vol 3. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3836-4_14

Download citation

Publish with us

Policies and ethics