Skip to main content

Back to the future: genetic correlations, adaptation and speciation

  • Chapter

Part of the Georgia Genetics Review III book series (GEGR,volume 3)

Abstract

Genetic correlations can affect the course of phenotypic evolution. Although genetic correlations among traits are a common feature of quantitative genetic analyses, they have played a very minor role in recent linkage-map based analyses of the genetic architecture of quantitative traits. Here, we use our work on host-associated races in pea aphids to illustrate how quantitative trait locus (QTL) mapping can be used to test specific hypotheses about how genetic correlations may facilitate ecological specialization and speciation.

Key words

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, A.A., 2000. Host range evolution: adaptation and tradeoffs in fitness of mites on alternative hosts. Ecology 81: 500–508.

    Google Scholar 

  • Basten, C.J., B.S. Weir & Z.-B. Zeng, 1996. QTL Cartographer (Ver 1.13), Department of Statistics, North Carolina State University, Raleigh, NC.

    Google Scholar 

  • Bradshaw, Jr., H.D., S.M. Wilbert, K.G. Otto & D.W. Schemske, 1995. Genetic mapping of floral traits associated with reproductive isolation in monkey flowers (Mimulus). Nature 376: 762–765.

    Google Scholar 

  • Caillaud, C.M. & S. Via, 2000. Specialized feeding behavior influences both ecological specializtion and assortative mating in sympatric host races of pea aphids. Am. Nat. 156: 609–621.

    Google Scholar 

  • Conner, J.K., 2002. Genetic mechanisms of floral trait correlations in a natural population. Nature 420: 407–410.

    PubMed  Google Scholar 

  • Diehl, S.R. & G.L. Bush, 1989. The role of habitat preference in adaptation and speciation, pp. 678 in Speciation and its Consequences, edited by D. Otte and J.A. Endler. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Eastop, V.F. 1973. Keys for the identification of Acyrthosiphon (Hemiptera: Aphididae). Bull. Br. Mus. Nat. Hist. B. Entomol. 26: 1–115.

    Google Scholar 

  • Eberhart, S.A. & W.A. Russell, 1966. Stability parameters for comparing varieties. Crop Sci. 6: 36–40.

    Google Scholar 

  • Falconer, D.S., 1952. The problem of environment and selection. Am. Nat. 86: 293–298.

    Google Scholar 

  • Falconer, D.S. & T.F.C. Mackay, 1996. Introduction to Quantitative Genetics. 4th edn., Longman Sci. and Tech., Harlow, UK.

    Google Scholar 

  • Fry, J.D., 1996. The evolution of host specialization, are trade-offs overrated? Am. Nat. 148: S84–S107.

    Google Scholar 

  • Fry, J.D., S.L. Heinsohn & T.F.C. Mackay, 1996. The contribution of new mutations to genotype-environment interaction for fitness in Drosophila melanogaster. Evolution 50: 2316–2327.

    Google Scholar 

  • Futuyma, D.J. & G. Moreno, 1988. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19: 201–233.

    Google Scholar 

  • Hawthorne, D.J. & S. Via, 2001. Genetic linkage facilitates ecological specialization and reproductive isolation in pea aphids. Nature 412: 904–907.

    PubMed  Google Scholar 

  • Henderson, C.R., 1963. Selection index and the expected genetic advance, pp. 141–163 in Statistical Genetics and Plant Breeding, edited by W.D Hanson and H.F. Robinson Natl. Acad. Sci, Natl. Res. Council Publ. No. 982, Washington, DC.

    Google Scholar 

  • Hill, W.G., 1970. Design of experiments to estimate heritability by regression of offspring on selected parents. Biometrics 26: 566–571.

    PubMed  Google Scholar 

  • Hill, W.G. & A. Robertson, 1966. The effect of linkage on limits to artificial selection. Genet. Res. 8: 269–294.

    PubMed  Google Scholar 

  • Jinks, J.L., 1954. The analysis of continuous variation in a diallel of Nicotiana rustica varieties. Genetics 39: 767–788.

    Google Scholar 

  • Kempthorne, O., 1957. An Introduction to Genetic Statistics. John Wiley & Sons. NY.

    Google Scholar 

  • Lande, R., 1975. The maintenance of genetic variation by mutation in a polygenic character with linked loci. Genet. Res. 26: 221–235.

    PubMed  Google Scholar 

  • Lande, R., 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution 30: 314–334.

    Google Scholar 

  • Lande, R., 1979. Quantitative genetic analysis of multivariate evolution, applied to brain: body allometry. Evolution 33: 402–416.

    Google Scholar 

  • Lande, R., 1980a. The genetic covariance between characters maintained by pleiotropic mutation. Genetics 94: 203–215.

    Google Scholar 

  • Lande, R., 1980b. Genetic variation and phenotypic evolution during allopatric speciation. Am. Nat. 116: 463–479.

    Google Scholar 

  • Lande, R., 1980c. Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution 34: 292–305.

    Google Scholar 

  • Lande, R., 1981. Models of speciation by sexual selection on polygenic traits. Proc. Natl. Acad. Sci. USA 78: 3721–3725.

    Google Scholar 

  • Lande, R., 1982. A quantitative genetic theory of life history evolution. Ecology 63: 607–615.

    Google Scholar 

  • Lande, R. & S.J. Arnold., 1983. The measurement of selection on correlated characters. Evolution 37: 1210–1226.

    Google Scholar 

  • Liu, B.H., 1997. Statistical Genomics: Linkage Mapping and QTL Analysis. CRC Press, NY. 612 pp.

    Google Scholar 

  • Littel, R.C., G.A. Milliken, W.W. Stroup & R.D. Wolfinger, 1996. SAS System for Mixed Models. SAS Institute, Cary, NC.

    Google Scholar 

  • Lynch, M. & B. Walsh, 1998. Genetics and Analysis of Quantitative Traits. Sinauer Press, Sunderland, MA.

    Google Scholar 

  • Mather, K. & J.L. Jinks, 1982. Biometrical Genetics. 3rd edn. Chapman and Hall, NY.

    Google Scholar 

  • Paterson, A.H. (Ed)., 1997. Molecular Dissection of Complex Traits. CRC Press, NY. 306 pp.

    Google Scholar 

  • Provine, W.B., 1971. The Origins of Theoretical Population Genetics. University of Chicago Press, Chicago.

    Google Scholar 

  • Rausher, M.D., 1988. Is coevolution dead? Ecology 69: 898–901.

    Google Scholar 

  • Rice, W.R., 1987. Selection via habitat specialization, the evolution of reproductive isolation as a correlated character. Evol. Ecol. 1: 301–314.

    Google Scholar 

  • Rice, W.R. & Hostert, E., 1993. Laboratory experiments on speciation: what have we learned in 40 years? Evolution 47: 1637–1653.

    Google Scholar 

  • Robertson, A., 1959a. Experimental design in the evaluation of genetic parameters. Biometrics 15: 219–226.

    Google Scholar 

  • Robertson, A., 1959b. The sampling variance of the genetic correlation coefficient. Biometrics. 15: 469–485.

    Google Scholar 

  • Roff, D.A., 1997. Evolutionary Quantitative Genetics. Chapman and Hall, NY. 493 pp.

    Google Scholar 

  • Schluter, D., 1998. Ecological causes of speciation, pp. 114–129 in Endless Forms: Species and Speciation, edited by Howard, D.J. & S.H. Berlocher, Oxford University Press, NY.

    Google Scholar 

  • Schluter, D., 2001. Ecology and the origin of species. Trends Ecol. Evol. 16: 372–380.

    PubMed  Google Scholar 

  • Sun, R.Y. & A.G. Robinson, 1966. Chromosome studies of 50 species of aphids. Can. J. Zool. 44: 649–653.

    PubMed  Google Scholar 

  • Tanksley, S.D., 1993. Mapping polygenes. Annu. Rev. Genet. 27: 205–233.

    PubMed  Google Scholar 

  • Van Vleck, L.D. & C.R. Henderson, 1961. Empirical sampling estimates of genetic correlations. Biometrics 17: 359 371.

    Google Scholar 

  • Via, S., 1987. Genetic constraints on the evolution of phenotypic plasticity, pp. 47–71 in Genetic Constraints on Adaptive Evolution, edited by Volker Loeschcke. Springer-Verlag.

    Google Scholar 

  • Via, S., 1991. The genetic structure of host plant adaptation in a spatial patchwork: demographic variability among reciprocally transplanted pea aphid clones. Evolution 45: 827–852.

    Google Scholar 

  • Via, S., 2001. Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol. Evol. 16: 381–390.

    PubMed  Google Scholar 

  • Via, S. & D.J. Hawthorne, 1998. The genetics of speciation: Promises and prospects of QTL mapping. pp. 352–366 in Endless Forms: Species and Speciation, edited by D.J. Howard & S.H. Berlocher.

    Google Scholar 

  • Via, S. & D.J. Hawthorne, 2002. Genetic architecture of ecological specialization and incipient speciation in divergent races of pea aphids. Am. Nat. 159(Suppl.): 576–588.

    Google Scholar 

  • Via, S. & R. Lande, 1985. Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39: 505–522.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rodney Mauricio

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Via, S., Hawthorne, D.J. (2005). Back to the future: genetic correlations, adaptation and speciation. In: Mauricio, R. (eds) Genetics of Adaptation. Georgia Genetics Review III, vol 3. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3836-4_13

Download citation

Publish with us

Policies and ethics