Advertisement

Radiation

Part of the Atmospheric and Oceanographic Sciences Library book series (ATSL, volume 32)

Keywords

Absorption Cross Section Solar Zenith Angle Middle Atmosphere Photolysis Rate Ultraviolet Absorption Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, M., and J.E. Frederick, Effective photodissociation cross sections for molecular oxygen and nitric oxide in the Schumann-Runge Bands. J Atmos Sci: 39, 2066, 1982.CrossRefGoogle Scholar
  2. Anderson, G.P., and L.A. Hall, Attenuation of solar irradiance in the stratosphere: Spectrometer measurements between 191 and 207 nm. J Geophys Res: 88, 6801–6806, 1983.Google Scholar
  3. Andrews, D.G., J.R. Holton, and C.B. Leovy, Middle Atmosphere Dynamics. Academic Press, 1987.Google Scholar
  4. Apruzese, J.P., M.R. Schoeberl, and D.F. Strobel, Parameterization of IR cooling in a middle atmosphere dynamics model, 1. Effects of the zonally averaged circulation. J Geophys Res: 87, 8951, 1982.Google Scholar
  5. Apruzese, J.P., D.F. Strobel, and M.R. Schoeberl, Parameterization of IR cooling in the middle atmosphere dynamics model, 2. Non LTE radiative transfer and the globally averaged temperature of the mesosphere and lower thermosphere. J Geophys Res: 89, 4917, 1984.Google Scholar
  6. Armstrong, B.H., Spectrum line profiles: The Voigt function. J Quant Spectrosc Radiat Transfer: 7, 61, 1967.CrossRefGoogle Scholar
  7. Ball, S.M., G. Hancock, I.J. Murphy, and S.P. Rayner, The relative quantum yields of O2 (A1ΔG) from the photolysis of ozone in the wavelength range 270 nm ≤ λ ≤ 329 nm. Geophys Res Lett: 20, 2063, 1993.Google Scholar
  8. Ball, S.M., G. Hancock, and F. Winterbottom, Product channels in the near-UV photodissociation of ozone. Faraday Discuss: 100, 215, 1995.Google Scholar
  9. Bass, A.M., A.E. Ledford, and A.H. Laufer, Extinction coefficients of NO2 and N2O4. J Res Natl Bur. Stand SecA: 80, 143, 1976.Google Scholar
  10. Bass, A.M., L.C. Glasgow, C. Miller, J.P. Jesson, and D.L. Filkin, Temperature dependent cross sections for formaldehyde [CH2O]: The effect of formaldehyde on stratospheric chlorine chemistry. Planet Space Sci: 28, 675, 1980.CrossRefGoogle Scholar
  11. Bates, D.R., Rayleigh scattering by air. Planet Space Sci: 32, 785, 1984.Google Scholar
  12. Baum, W.A., F.S. Johnson, J.J. Obserly, C.C. Rockwood, C.V. Strain, and R. Tousey, Solar ultraviolet spectrum to 88 kilometers. Phys Rev: 70, 781, 1946.CrossRefGoogle Scholar
  13. Benter, T., C. Feldmann, U. Kirchner, M. Schmidt, S. Schmidt, and R.N. Schindler, UV/VIS absorption spectra of HOBr and CH3OBr; Br(2P3/2) atom yields in the photolysis of HOBr. Ber Bunsenges Phys Chem: 99, 1144, 1995.Google Scholar
  14. Bhartia, P.K., K.F. Klenk, A.J. Fleig, C.G. Wellemeyer, and D. Gordon, Intercomparison of Nimbus 7 Solar Backscattered Ultraviolet ozone profiles with rocket, balloon, and umkehr profiles. J Geophys Res: 89, 5227, 1984.Google Scholar
  15. Bhartia, P.K., R.D. McPeters, C.L. Mateer, L.E. Flynn, and C. Wellemeyer, Algorithm for the estimation of vertical ozone profiles from the backscattered ultraviolet technique. J Geophys Res: 101, 18,793, 1996.CrossRefGoogle Scholar
  16. Biaumé, F., Nitric acid vapour absorption cross section spectrum and its photodissociation in the stratosphere. J Photochem: 2, 139, 1973.Google Scholar
  17. Bohren, C.F., and D.R. Huffman, Absorption and Scattering of Light by Small Particles. J. Wiley and Sons, 1983.Google Scholar
  18. Bongartz, A., J. Kames, F. Welter, and V. Schurath, Near UV absorption cross sections and trans/cis equilibrium of nitrous oxide. J Phys Chem: 95, 1076, 1991.CrossRefGoogle Scholar
  19. Brasseur, G., and D. Offermann, Recombination of atomic oxygen near the mesopause: Interpretation of rocket data. J Geophys Res: 91, 10,818, 1986.Google Scholar
  20. Brasseur, G., A. De Rudder, and P.C. Simon, Implication for stratospheric composition of a reduced absorption cross section in the Herzberg continuum of molecular oxygen. Geophys Res Lett: 10, 20, 1983.Google Scholar
  21. Brownword, R.A., M. Hillenkamp, T. Laurent, R.K. Vasta, H.-R. Volpp, and J. Wolfrum, Quantum yield for H atom formation in the methane dissociation after photoexcitation at the Lyman-α (121.6 nm) wavelength. Chem Phys Lett: 266, 259, 1997.Google Scholar
  22. Brueckner, G.E., K.L. Edlow, L.E. Floyd, J.L. Lean, and M.E. van Hoosier, The solar ultraviolet spectral irradiance monitor (SUSIM) experiment on board the Upper Atmosphere Research Satellite. J Geophys Res: 98, 10,695, 1993.Google Scholar
  23. Brusa, R.W., and C. Frohlich, Recent solar constant determinations from high altitude balloons, Paper presented at the Symposium on the Solar Constant and the Spectral Distribution of Solar Irradiance, IAMAP Third Scientific Assembly, Published by the Radiation Commission, Boulder, Colo, USA, 1982.Google Scholar
  24. Burkholder, J.B., Ultraviolet absorption spectrum of HOCl. J Geophy Res: 98, 2963, 1993.Google Scholar
  25. Burkholder, J.B., J.J. Orlando, and C.J. Howard, Ultraviolet absorption cross section of Cl2O2 between 210 and 410 nm. J Phys Chem: 94, 687, 1990.CrossRefGoogle Scholar
  26. Burkholder, J.B., R.K. Talukdar, A.R. Ravishankara, and S. Solomon, Temperature dependence of the HNO3 UV absorption cross section. J Geophys Res: 98, 22,937, 1993.Google Scholar
  27. Burkholder, J.B., R.K. Talukdar, and A.R. Ravishankara, Temperature dependence of the ClONO2 UV absorption spectrum. Geophys Res Lett: 21, 585, 1994.Google Scholar
  28. Burkholder, J.B., A.R. Ravishankara, and S. Solomon, UV visible and IR absorption cross sections of BrONO2. J Geophys Res: 100, 16,793, 1995.CrossRefGoogle Scholar
  29. Callear, A.B., and M.J. Pilling, Fluorescence of nitric oxide, 6. Predissociation and cascade quenching in NO D2Σ+ (ν = 0) and NO C2π (ν = 0), and the oscillator strengths of the σ (0,0) and (0,0) bands. Trans Faraday Soc: 66, 1886, 1970a.Google Scholar
  30. Callear, A.B., and M.J. Pilling, Fluorescence of nitric oxide, 7. Quenching rates of NO C2 π (ν = 0), and its rate of radiation to NO A2 Σ+, energy transfer efficiencies and mechanisms of predissociation. Trans Faraday Soc: 66, 1618, 1970b.Google Scholar
  31. Cantrell, C.A., J.A. Davison, A.H. McDaniel, R.E. Shetter, and J.G. Calvert, Temperature dependent formeldehyde cross sections in the near ultraviolet spectral region. J Phys Chem: 94, 3902, 1990.CrossRefGoogle Scholar
  32. Cantrell, C., A. Zimmer, and G.S. Tyndall, Absorption cross sections for water vapor from 183 to 193 nm. Geophys Res Lett: 24, 2195, 1997.Google Scholar
  33. Cess, R.D., and V. Ramanathan, Radiative transfer in the atmosphere of Mars and that of Venus above the cloud deck. J Quant Spectrosc Radiat Transfer: 12, 933, 1972.CrossRefGoogle Scholar
  34. Chabrillat, S., and G. Kockarts, Simple parameterization of the absorption of the solar Lyman-α line. Geophys Res Lett: 24, 2659, 1997. Correction: Geophys Res Lett: 25, 79, 1998.CrossRefGoogle Scholar
  35. Chandrasekhar, S., Radiative Transfer. Oxford University Press, 1950 (Reprinted by Dover Publ., 1960).Google Scholar
  36. Chapman, S., The absorption and dissociative or ionizing effect of monochromatic radiations in an atmosphere on a rotating earth. Proc Phys Soc: 43, 483, 1931.Google Scholar
  37. Cheung, A.S.-C., K. Yoshino, W.H. Parkinson, S.L. Guberman, and D.E. Freeman, Absorption cross section measurements of oxygen in the wavelength region 195–241 nm of the Herzberg continuum. Planet Space Sci: 34, 1007, 1986.CrossRefGoogle Scholar
  38. Chou, C.C., W.S. Smith, H. Vera Ruiz, K. Moe, G. Crescentini, J.J. Molinar, and F.S. Rowland, The temperature dependence of the ultraviolet absorption cross sections of CCl2F2 and CCl3F, and their stratospheric significance. J Phys Chem: 81, 1977.Google Scholar
  39. Chou, C.C., R.J. Milstein, W.S. Smith, H. Vera Ruiz, M.J. Molinar, and F.S. Rowland, Stratospheric photodissociation of several saturated perhalo chlorofluorocarbon compounds in current technological use (Fluorocarbons −13, −113, −114, and −115). J Phys Chem: 82, 1, 1978.CrossRefGoogle Scholar
  40. Cieslik, S., Détermination expérimentale des forces d’oscillateur des bandes β, γ, δ, et ξ de la molécule NO. Bull Cl Sci Acad Roy Belg: 63, 884, 1977.Google Scholar
  41. Cieslik, S., and M. Nicolet, The aeronomic dissociation of nitric oxide. Planet Space Sci: 21, 925, 1973.CrossRefGoogle Scholar
  42. Clough, S.A., and M.J. Iacono, Line by line calculation of the atmospheric fluxes and cooling rates: Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons. J Geophys Res: 100, 16,519, 1995.Google Scholar
  43. Cox, R.A., and K. Patrick, Kinetics of the reaction HO2 + NO2 (+ M) → HO2 NO2 using molecular modulation spectrometry. Int J Chem Kinetics: 11, 635, 1979.CrossRefGoogle Scholar
  44. Cox, R.A., D.W. Sheppard, and M.P. Stevens, Absorption coefficients and kinetics of the BrO radical using molecular modulation. J Photochem: 19, 189, 1982.CrossRefGoogle Scholar
  45. Cox, R.A., and G.D. Hayman, The stability and photochemistry of dimers of the ClO radical and implications for the Antarctic ozone depletion. Nature: 332, 796, 1988.Google Scholar
  46. Crutzen, P., Comment on paper “Absorption and emission by carbon dioxide in the mesosphere”, by J.T. Houghton. Quart J Roy Meteorol Soc: 96, 767, 1970.Google Scholar
  47. Crutzen, P.J., Energy conversions and mean vertical motions in the high latitude summer mesosphere and lower thermosphere, in Mesospheric Models and Related Experiments. G. Fiocco (ed.), D. Reidel Publishing Co., Dordrecht, Holland, 1971.Google Scholar
  48. Curtis, A.R., Discussion of a statistical model for water vapour absorption. Quart J Roy Meteorol Soc: 78, 638, 1952.Google Scholar
  49. Curtis, A.R., and R.M. Goody, Thermal radiation in the upper atmosphere. Proc Roy Soc: A236, 193, 1956.Google Scholar
  50. Daumont, D., J. Brion, J. Charbonnier, and J. Malicet, Ozone UV spectroscopy, 1. Absorption cross sections at room temperatures. J Atmos Chem: 15, 145, 1992.CrossRefGoogle Scholar
  51. Davidson, J.A., C.A. Cantrell, A.H. McDaniel, R.E. Shetter, S. Madronich, and J.G. Calvert, Visible-ultraviolet absorption cross sections for NO2 as a function of temperature. J Geophys Res: 93, 7105, 1988.Google Scholar
  52. DeMore, W.B., and M. Patapoff, Temperature and pressure dependence of CO2 extinction coefficients. J Geophys Res: 77, 6291, 1972.Google Scholar
  53. DeMore, W.B., and E. Tschuikow-Roux, Ultraviolet spectrum and chemical reactivity of the ClO dimer. J Phys Chem: 94, 5856, 1990.CrossRefGoogle Scholar
  54. Deshler, T., B.J. Johnson, and W.R. Rozier, Baloon-borne measurements of Pinatubo aerosol during 1991 and 1992 at 41°N, vertical profile size distribution and volatility. Geophys Res Lett: 20, 1435, 1993.Google Scholar
  55. Deters, B., J.P. Burrows, S. Himmelmann, and C. Blindauer, Gas phase spectra of HOBr and Br2O and their atmospheric significance. Ann Geophys: 14, 468, 1996.Google Scholar
  56. Dickinson, R.E., Method of parameterization for infrared cooling between the altitudes of 30 and 70 km. J Geophys Res: 78, 4451, 1973.Google Scholar
  57. Dickinson, R.E., Infrared radiative cooling in the mesosphere and lower thermosphere. J Atmos Terr Phys: 46, 995, 1984.CrossRefGoogle Scholar
  58. Dopplick, T.G., Radiative heating of the global atmosphere. J Atmos Sci: 29, 1278, 1972.CrossRefGoogle Scholar
  59. Edwards, D.P., GENLN2: A general line-by-line atmospheric transmittance and radiance model. Version 3.0 description and users guide, NCAR Technical Note, NCAR/TN-367+STR, National Center for Atmospheric Research, Boulder, Colo., USA, 1992.Google Scholar
  60. Edwards, D.P., M. López-Puertas, and M.A. López-Valverde, Non-local thermodynamic equilibrium studies of the 15-µm bands of CO2 for atmospheric remote sensing. J Geophys Res: 98, 14,955, 1993.Google Scholar
  61. Ellingson, R.G., J. Ellis, and S. Fels, The intercomparison of radiation codes used in climate models: Long wave results. J Geophys Res: 96, 8929, 1991.Google Scholar
  62. Elsasser, W.M., Heat transfer by infrared radiation in the atmosphere. Harvard Meteorol. Stud: 6, Harvard Univ. Press, Cambridge, Mass., USA, 1942.Google Scholar
  63. Elterman, L., UV, Visible and IR Attenuation for Altitudes to 50 km. AFCRL Report 68-0153, Environ. Res. Papers, Bedford, Mass, USA, 1968.Google Scholar
  64. Fang, T.M., S.C. Wofsy, and A. Dalgarno, Capacity distribution functions and absorption in Schumann-Runge bands of molecular oxygen. Planet Space Sci: 22, 413, 1974.CrossRefGoogle Scholar
  65. Fomichev, V.I., W.E. Ward, S.R. Beagley, C. McLandress, J.C. McConnell, N.A. McFarlane, and T.G. Shepherd, Extended Canadian Middle Atmosphere Model: Zonal-mean climatology and physical parameterizations. J Geophys Res: 107, DIO, doi:10.1029/2001JD000479, 2002.Google Scholar
  66. Frederick, J.E., and R. D. Hudson, Predissociation of nitric oxide in the mesosphere and stratosphere. J Atmos Sci: 36, 737, 1979.Google Scholar
  67. Frederick, J.E., and J.E. Mentall, Solar irradiance in the stratosphere: Implication for the Herzberg continuum absorption of O2. Geophys Res Lett: 9, 461, 1982.Google Scholar
  68. Frederick, J.E., R.B. Abrams, and P.J. Crutzen, A potential mechanism for coupling thermospheric variations to the mesosphere and the stratosphere. J Geophys Res: 88, 3829, 1983.Google Scholar
  69. Froidevaux, L., and Y.L. Yung, Radiation and chemistry in the stratosphere: Sensitivity to O2 cross sections in the Herzberg continuum. Geophys Res Lett: 9, 854, 1982.Google Scholar
  70. Fu, Q., and K.N. Liou, On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J Atmos Sci: 49, 2139, 1992.CrossRefGoogle Scholar
  71. Garcia, R.R., and S. Solomon, A numerical model for the zonally averaged dynamical and chemical structure of the middle atmosphere. J Geophys Res: 88, 1379, 1983.Google Scholar
  72. Ghazi, A.V., V. Ramanathan, and R.E. Dickinson, Acceleration of upper stratospheric radiative damping: Observational evidence. Geophys Res Lett: 6, 437, 1979.Google Scholar
  73. Gijs, A., A. Koppers, and D.P. Murtagh, Model studies of the influence of O2 photodissociation parameterizations in the Schumann-Runge bands on ozone related photolysis in the upper atmosphere. Ann Geophys: 14, 68, 1997.Google Scholar
  74. Gillotay, D., and P.C. Simon, Ultraviolet absorption cross sections of methyl bromide at stratospheric temperatures. Ann Geophys: 6, 211, 1988.Google Scholar
  75. Gillotay, D., A. Jenouvrier, B. Coquart, M.F. Merienne, and P.C. Simon, Ultraviolet absorption cross sections of bromoform in the temperature range 295–210 K. Planet Space Sci: 37, 1127, 1989.Google Scholar
  76. Godson, W.L., The evaluation of infrared radiative fluxes due to atmosphere water vapour. Quart J Roy Meteorol Soc: 79, 367, 1953.Google Scholar
  77. Goodeve, C.F., and A.C.W. Taylor, The continuous absorption spectrum of hydrogen bromide. Proc Roy Soc: A152, 221, 1935.Google Scholar
  78. Goody, R.M., Atmospheric Radiation, I. Theoretical Basis. Oxford at the Clarendon Press, 1964.Google Scholar
  79. Goody, R.M., and Y.L. Yung, Atmospheric Radiation: Theoretical Basis. Oxford University Press, 1989.Google Scholar
  80. Goody, R.M., R. West, L. Chen, and D. Crisp, The correlated k-method for radiation calculations in nonhomogeneous atmospheres. J Quant Spectrosc Radiat Transfer: 42, 539, 1989.CrossRefGoogle Scholar
  81. Gordley, L.L., B.T. Marshall, and D.A. Chu, LINEPAK: Algorithms for modeling spectral transmittance and radiance. J Quant Spectrosc Radiat Transfer: 52, 563, 1994.CrossRefGoogle Scholar
  82. Graham, R.A., Photochemistry of NO3 and the kinetics of the N2O5 — O3 system, PhD Thesis, University of California, Berkeley, Calf, USA, 1975.Google Scholar
  83. Graham, R.A., and H.S. Johnston, The photochemistry of NO3 and the kinetics of the N2O5 — O3 system. J Phys Chem: 82, 254, 1978.CrossRefGoogle Scholar
  84. Graham, R.A., A.M. Wier, and J.A. Pitts, Ultraviolet and infrared cross section of gas phase HO2NO2. Geophys Res Lett: 5, 909, 1978.Google Scholar
  85. Hanel, R.A., and B.J. Courath, Thermal Emission Spectra of the Earth and Atmosphere Obtained from the Nimbus 4 Michelson Interferometer Experiment. NASA Report X-620-70-244, 1970.Google Scholar
  86. Harwood, M.H., R.L. Jones, R.A. Cox, E. Lutman, and O.V. Rattigan, Temperature-dependent absorption cross sections of N2O5. J Photochem Photobiol A: Chem: 73, 167, 1993.CrossRefGoogle Scholar
  87. Harries, J., The greenhouse earth: A view from space. Quart J Roy Meteorol Soc: 122, 799, 1996.CrossRefGoogle Scholar
  88. Henri, V., and S.A. Schou, Struktur und Akitivierung der Molekel des Formaldehyds, eine Analyse auf Grund des ultrvioletten Absorption-Spektrums des Dampfes. Zeit Phys: 49, 774, 1928.Google Scholar
  89. Herman, J.R., and J.E. Mentall, The direct and scattered solar flux within the stratosphere. J Geophys Res: 87, 1319, 1982a.Google Scholar
  90. Herman, J.R., and J.E. Mentall, O2 absorption cross section (187–225 nm) from stratospheric solar flux measurements. J Geophys Res: 87, 8967, 1982b.Google Scholar
  91. Herzberg, G., Ultraviolet absorption spectra of acetylene and formaldehyde. Trans Faraday Soc: 27, 378, 1931.Google Scholar
  92. Holt, R.B., and O. Oldenberg, Role of hydrogen peroxide in the thermal combination of hydrogen and oxygen. J Chem Phys: 17, 1091, 1949.CrossRefGoogle Scholar
  93. Holt, R.B., C.K. McLane, and O. Oldenberg, Ultraviolet absorption spectrum of hydrogen peroxide. J Chem Phys: 16, 225, 1948. Erratum: J Chem Phys: 16, 638, 1948.Google Scholar
  94. Houghton, J.T., Absorption and emission by carbon dioxide in the mesosphere. Quart J Roy Meteorol Soc: 95, 1, 1969.Google Scholar
  95. Hubinger, S., and J.B. Nee, Photoabsorption spectrum for OClO between 125 and 470 nm. Chem Phys: 181, 247, 1994.CrossRefGoogle Scholar
  96. Hubrich, C., and F. Stuhl, The ultraviolet absorption of some halogenated methanes and ethanes of atmospheric interest. J Photochem: 12, 93, 1980.CrossRefGoogle Scholar
  97. Hubrich, C., C. Zetsch, and F. Stuhl, Absorptionsspektren von halogenierten Methanen im Bereich von 275 bis 160 nm bei Temperaturen von 298 und 208 K. Ber Bunsenges Phys Chem: 81, 437, 1977.Google Scholar
  98. Huder, K.J., and W.B. DeMore, Absoprtion cross sections of the ClO dimer. J Phys Chem: 99, 3905, 1995.CrossRefGoogle Scholar
  99. Hudson, R.D., and S.H. Mahle, Photodissociation rates of molecular oxygen in the mesosphere and lower thermosphere. J Geophys Res: 77, 2902, 1972.Google Scholar
  100. Hudson, R.D., V.L. Carter, and J.A. Stein, An investigation of the effect of temperature on the Schumann-Runge absorption continuum of oxygen, 1580–910 A. J Geophys Res: 71, 2295, 1966.Google Scholar
  101. Humlicek, J., Optimized computation of the Voigt and complex probability functions. J Quart Spectrosc Radiat Transfer: 27, 437, 1982.Google Scholar
  102. Inn, E.C.Y., Absorption coefficient of HCl in the region 1400 to 2200 A. J Atmos Sci: 32, 2375, 1975.CrossRefGoogle Scholar
  103. Inn, E.C.Y., and Y. Tanaka, Absorption coefficient of ozone in the ultraviolet and visible regions. J Opt Soc Amer: 43, 8760, 1953.Google Scholar
  104. Inn, E.C.Y., K. Watanabe, and M. Zelikoff, Absorption coefficients of gases in the vacuum ultraviolet: 3. CO2. J Chem Phys: 21, 1648, 1953.CrossRefGoogle Scholar
  105. Iribarne, J.V., and H.R. Cho, Atmospheric Physics, D. Reidel, Dordrecht, The Netherlands, 1980.Google Scholar
  106. Jenouvrier, A., B. Coquart, and M.F. Merienne-Lafore, New measurements of the absorption cross sections in the Herzberg continuum of molecular oxygen in the region between 205 and 240 nm. Planet Space Sci: 34, 253, 1986.CrossRefGoogle Scholar
  107. Jet Propulsion Laboratory (JPL), Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, W.B. DeMora, S.P. Sander, D.M. Golden, R.F. Hampson, M.J. Kurylo, C.J. Howard, A.R. Ravishankara, C.E. Kolb, and M.J. Molina, eds., JPL Publication 97-4, 1997.Google Scholar
  108. Johnson, F.S., J.D. Porcell, R. Tousey, and K. Watanabe, Direct measurements of the vertical distribution of atmospheric ozone to 70 km altitude. J Geophys Res: 57, 157, 1952.Google Scholar
  109. Johnston, H.S., and R.A. Graham, Gas-phase ultraviolet spectrum of nitric acid vapor. J Chem Phys: 77, 62, 1973.Google Scholar
  110. Johnston, H.S., and R.A. Graham, Photochemistry of NOx compounds. Canad J Chem: 52, 1415, 1974.Google Scholar
  111. Johnston, H.S., and G. Selwyn, New cross sections for the absorption of near ultraviolet radiation by nitrous oxide (N2O). Geophys Res Lett: 2, 549, 1975.Google Scholar
  112. Johnston H.S., S.G. Chang, and G. Whitten, Photolysis of nitric acid vapor. J Phys Chem: 78, 1, 1974.Google Scholar
  113. Johnston, H.S., H.F. Davies, and Y.T. Lee, NO3 photolysis product channels: Quantum yields from observed energy thresholds. J Phys Chem: 100, 4713, 1996.Google Scholar
  114. Jones, E.J., and O.R. Wulf, The absorption coefficient of nitrogen pentoxide in the ultraviolet and the visible absorption spectrum NO3. J Chem Phys: 5, 873, 1937.Google Scholar
  115. Joseph, J.H., W.J. Wiscombe, and J.A. Weinman, The delta-Eddington approximation for radiative flux transfer. J Atmos Sci: 33, 2452, 1976.CrossRefGoogle Scholar
  116. Kiehl, J.T., and V. Ramanathan, CO2 radiative parameterization used in climate models: Comparison with narrow band moels and with laboratory data. J Geophys Res: 88, 5191, 1983.Google Scholar
  117. Kiehl, J.T., and R.E. Dickinson, A study of the radiative effects of enhanced atmospheric CO2 and CH4 on early earth surface temperatures. J Geophys Res: 92, 2991, 1987.Google Scholar
  118. Knauth, H.-D., H. Alberti, and H. Clausen, Equilibrium constant of the gas reaction Cl2 + H2O ultraviolet spectrum of HOCl. J Phys Chem: 83, 1604, 1979.CrossRefGoogle Scholar
  119. Kockarts, G., Absorption and photodissociation in the Schumann-Runge bands of molecular oxygen in the terrestrial atmosphere. Planet Space Sci: 24, 589, 1976.CrossRefGoogle Scholar
  120. Kockarts, G., Nitric oxide cooling in the terrestrial thermosphere. Geophys Res Lett: 7, 137, 1980.Google Scholar
  121. Kockarts, G., Penetration of solar radiation in the Schumann-Runge bands of molecular oxygen, A robust approximation. Ann Geophys, 1994.Google Scholar
  122. Kondratyev, K.Y., Radiation in the Atmosphere. Academic Press, 1969.Google Scholar
  123. Kourganoff, V., Basic Methods in Transfer Problems. Oxford University Press, 1952.Google Scholar
  124. Kuhn, W.R., and J. London, Infrared radiative cooling in the middle atmosphere (30–110 km). J Atmos Sci: 26, 189, 1969.CrossRefGoogle Scholar
  125. Kylling, A., K. Stamnes, R.R. Meier, and D.E. Anderson, The 200–300 nm radiation field within the stratosphere: Comparison of models with observation. J Geophys Res: 98, 2741, 1993.Google Scholar
  126. Lacis, A.A., and J.E. Hansen, A parameterization for the absorption of solar radiation in the earth’s atmosphere. J Atmos Sci: 31, 118, 1974.CrossRefGoogle Scholar
  127. Lacis, A.A., and V. Oinas, A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J Geophys Res: 96, 9027, 1991.Google Scholar
  128. Langhoff, J.R., J.P. Dix, J.O. Arnold, R.W. Nicholls, and L.L. Danylewych, Theoretical intensity parameters for the vibration-rotation bands of ClO. J Chem Phys: 67, 4306, 1977a.Google Scholar
  129. Langhoff, S.R., R.L. Jaffe, and J.O. Arnold, Effective cross sections and rate constants for predissociation of ClO in the earth’s atmosphere. J Quant Spectrosc Radiat Transfer: 18, 227, 1977b.CrossRefGoogle Scholar
  130. Laufer, A.M., and J.R. McNesby, Deuterium isotope effect in vacuum ultraviolet absorption coefficients of water and methane. Canad J Chem: 43, 3487, 1965.Google Scholar
  131. Lean, J., The sun’s variable radiation and its relevance for earth. Annu Rev Astron Astrophys: 35, 33, 1997.CrossRefGoogle Scholar
  132. Lean, J.L. and A.J. Blake, The effect of temperature on thermospheric molecular oxygen absorption in the Schumann-Runge continuum. J Geophys Res: 86, 211, 1981.Google Scholar
  133. Lee, R.B., M.A. Gibson, R.S. Wilson, and S. Thomas, Long-term solar irradiance variability during sunspot cycle 22. J Geophys Res: 100, 1667, 1995.Google Scholar
  134. Leifson, S.W., Absorption spectra of some gases and vapors in the Schumann region. Astrophys J: 63, 73, 1926.CrossRefGoogle Scholar
  135. Lenoble, J., Standard procedures to compute atmospheric radiative transfer in a scattering atmosphere, I.A.M.A.P., National Center for Atmospheric Research, Boulder, Colo., USA, 1977.Google Scholar
  136. Lewis, B.R., and J.H. Carter, Temperature dependence of the carbon dioxide photoabsorption cross section between 1200 and 1700 Å. J Quant Spectros Radiat Transfer: 30, 297, 1983.Google Scholar
  137. Lewis, B.R., L. Berzins, and J.H. Carter, Oscillator strengths for the Schumann-Runge bands of O2. J Quant Spectrosc Radiat Transfer: 36, 209, 1986.Google Scholar
  138. Lewis, B.R., S.T. Gibson, and P.M. Dooley, Fine structure dependence of predissociation linewidth in the Schumann-Runge bands of molecular oxygen. J Chem Phys: 100, 6993, 1994.CrossRefGoogle Scholar
  139. Lin, C.-L., and W.B. DeMore, O(1D) production in ozone photolysis near 3100 A. J Photochem: 2, 161, 1973.Google Scholar
  140. Lin, C.L., N.K. Rohatgi, and W.B. Demore, Ultraviolet absorption cross sections of hydrogen peroxide. Geophys Res Lett: 5, 113, 1978.Google Scholar
  141. Liou, K.-N., An Introduction to Atmospheric Radiation, Academic Press, 1980.Google Scholar
  142. Liou, K.-N., An Introduction to Atmospheric Radiation, Second Edition, Academic Press, 2002.Google Scholar
  143. London, J., Radiative energy sources and sinks in the stratosphere and mesophere, Proc of the NATO Advanced Institute on Atmospheric Ozone, A.C. Aikin, ed., U.S. Dept. of Transportation, FAA-EE-80-20, FAA, Washington, D.C., USA, 1980.Google Scholar
  144. López-Puertas, M., and F.W. Taylor, Non-LTE Radiative Transfer in the Atmosphere, World Scientific, 2001.Google Scholar
  145. López-Puertas, M., R. Rodrigo, A. Molina, and F.W. Taylor, A non-LTE radiative transfer model for infrared bands in the middle atmosphere, I. Theoretical basis and application to CO2 15-µm bands. J Atmos Terr Phys: 48, 729, 1986.Google Scholar
  146. López-Puertas, M., M.A. López-Valverde, C.P. Rinsland, and M.R. Gunson, Analysis of the upper atmosphere CO2(v 2) vibrational temperatures retrieved from ATMOS/Spacelab 3 observations. J Geophys Res: 97, 20,469, 1992a.Google Scholar
  147. López-Puertas, M., M.A. Lopez-Valverde, and F.W. Taylor, Vibrational temperatures and radiative cooling of the CO2 15µm bands in the middle atmosphere. Quart J Roy Meteorol Soc: 118, 499, 1992b.Google Scholar
  148. Luther, F.M., D.J. Wuebbels, W.H. Duewer, and J.C. Chang, Effect of multiple scattering on species concentrations and model sensitivity. J Geophys Res: 83, 3563, 1978.Google Scholar
  149. Magnotta, F., and H.S. Johnston, Photodissociation quantum yields for the NO3 free radical. Geophys Res Lett: 7, 769, 1980.Google Scholar
  150. Malkmus, W., Random Lorentz band model with exponential-tailed S-1 line intensity distribution function. J Opt Soc Amer: 57, 323, 1967.Google Scholar
  151. Malicet, J., D. Daumont, J. Charbonnier, C. Parisse, A. Chakir, and J. Brion, Ozone UV spectroscopy, 2. Absorption cross sections and temperature dependence. J Atmos Chem: 21, 263, 1995.CrossRefGoogle Scholar
  152. Manabe, S., and F. Moller, On the radiative equilibrium and heat balance of the atmosphere. Mon Wea Rev: 89, 503, 1961.Google Scholar
  153. Manabe, S., and R.F. Strickler, Thermal equilibrium of the atmosphere with a convective adjustment. J Atmos Sci: 21, 361, 1964.CrossRefGoogle Scholar
  154. Maric, D., J.P. Burrows, and G.K. Moortgat, A study of the UV-visible absorption spectra of Br2 and BrCl. J. Photochem Photobiol A: Chem: 83, 179, 1994.CrossRefGoogle Scholar
  155. Marmo, F.F., Absorption coefficients of nitrogen oxide in the vacuum ultraviolet. J Opt Soc Amer: 43, 1186, 1953.Google Scholar
  156. Marshall, B.T., L.L. Gordley, and D.A. Chu, BANDPAK: Algorithms for modeling broadband transmission and radiance. J Quant Spectrosc Radiat Transfer: 52, 581, 1994.CrossRefGoogle Scholar
  157. Mauldin III, R.L., J.B. Burkholder, and A.R. Ravishankara, A photochemical, thermodynamic and kinetic study of ClOO. J. Phys Chem: 96, 2582, 1992.CrossRefGoogle Scholar
  158. McCartney, E.J., Optics of the Atmosphere: Scattering by Molecules and Particles, Wiley and Sons, 1976.Google Scholar
  159. McCormick, M.P., P. Hamill, T.J. Pepin, W.P. Chu, T.J. Swissler, and L.R. McMaster, Satellite studies of the stratospheric aerosol. Bull Am Meteoroleor Soc: 60, 1038, 1979.Google Scholar
  160. McLeod, H., G. P. Smith, and D. M. Golden, Photodissociation of pernitric acid at 248 nm. J Geophys Res: 93 3813, 1988.Google Scholar
  161. Meador, W.E., and W.R. Weaver, Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement. J Atmos Sci: 37, 630, 1980.CrossRefGoogle Scholar
  162. Meier, R.R., D.E. Anderson, Jr., and M. Nicolet, Radiation field in the troposphere and stratosphere from 240 to 1000 nm, I. General analysis. Planet Space Sci: 30, 923, 1982.Google Scholar
  163. Mérienne, M.F., B. Coquart, and A. Jenouvrier, Temperature effect of the ultraviolet absorption of CFCl3, CF2Cl2 and N2O. Planet Space Sci: 38, 617, 1990.Google Scholar
  164. Mertens, C.J., M.G. Mlynczak, R.R. Garcia, and R.W. Portmann, A detailed evaluation of the stratospheric heat budget, 1. Radiation transfer. J Geophys Res: 104, 6021, 1999.CrossRefGoogle Scholar
  165. Michelsen, H.H., R.J. Salawitch, P.O. Wennberg, and J.G. Anderson, Production of O(1D) from photolysis of O3. Geophys Res Lett: 21, 2227, 1994.CrossRefGoogle Scholar
  166. Mie, G., Beitrage zur optik trueber Medien, Speziell koloidaller metaloesungen Ann der Phys: 25, 377, 1908.Google Scholar
  167. Milne, E.A., Handbuch der Astrophysik, 3, Part I. 1930 (Reprinted in “Selected Papers on the Transfer of Radiation”, Dover, 1966).Google Scholar
  168. Minschwaner, K., and D.E. Siskind, A new calculation of nitric oxide photolysis in the stratosphere, mesosphere, and lower thermosphere. J Geophys Res: 98, 20,401, 1993.Google Scholar
  169. Minschwaner, K., G.P. Anderson, L.A. Hall, and K. Yoshino, Polynomial coefficients for calculating O2 Schumann-Runge cross sections at 0.5 cm−1 resolution. J Geophys Res: 97, 10,103, 1992.Google Scholar
  170. Minschwaner, K., R.J. Salawitch, and M.B. McElroy, Absorption of solar radiation by O2: Implications for O3 and lifetimes of N2O, CFCl3, and CF2Cl2. J Geophys Res: 98, 10,543, 1993.Google Scholar
  171. Minschwaner, K., R.J. Thomas, and D.W. Rusch, Scattered ultraviolet radiation in the upper stratosphere, I. Observations. J Geophys Res: 100, 11,157, 1995.Google Scholar
  172. Mishalanie, E.A., J.C. Rutkowski, R.S. Hutte, and J.W. Birks, Ultraviolet absorption spectrum of gaseous hypochlorous acid. J Phys Chem: 90, 5578, 1986.CrossRefGoogle Scholar
  173. Mitchell, A.C.G., and W.M. Zemansky, Resonance Radiation and Excited Atoms. Harvard Univ. Press, Cambridge, Mass., USA, 1934 (Reprinted 1961).Google Scholar
  174. Mlynczak, M.G., and B.T. Marshall, A reexamination of the role of solar heating in the O2 atmospheric and infrared atmospheric bands. Geophys Res Lett: 23, 657, 1996.CrossRefGoogle Scholar
  175. Mlynczak, M.G., and S. Solomon, On the efficiency of solar heating in the middle atmosphere. Geophys Res Lett: 18, 1201, 1991.Google Scholar
  176. Mlynczak, M.G., and S. Solomon, A detailed evaluation of the heating efficiency in the middle atmosphere. J Geophys Res: 98, 10,517, 1993.Google Scholar
  177. Mlynczak, M.G., C.J. Mertens, R.R. Garcia, and R.W. Portman, A detailed evaluation of the stratospheric heat budget, 2. Global radiation balance and diabatic circulations. J Geophys Res: 104, 6039, 1999.Google Scholar
  178. Molina, M.J., and F.S. Rowland, Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalyzed destruction of ozone. Nature: 249, 810, 1974.CrossRefGoogle Scholar
  179. Molina, L.T., and M.J. Molina, Ultraviolet spectrum of HOCl. J Phys Chem: 42, 2410, 1978.Google Scholar
  180. Molina, L.T., and M.J. Molina, Chlorine nitrate ultraviolet absorption spectrum at stratospheric temperatures. J Photochem: 11, 139, 1979.CrossRefGoogle Scholar
  181. Molina, L.T., and M.J. Molina, UV absorption cross sections of HO2NO2 vapor. J Photochem: 15, 97, 1981.CrossRefGoogle Scholar
  182. Molina, L.T., and M.J. Molina, Absolute absorption cross sections of ozone in the 185 to 350 nm wavelength range. J Geophys Res: 91, 14,501, 1986.Google Scholar
  183. Molina, L.T., M.J. Molina, and F.S. Rowland, Ultraviolet absorption cross sections of several brominated methanes and ethanes of atmospheric interest. J Phys Chem: 86, 2672, 1982.CrossRefGoogle Scholar
  184. Molina, M.J., A.J. Colussi, L.T. Molina, R.N. Schindler, and T.L. Tso, Quantum yield of chlorine atom formation in the photodissociation of chlorine peroxide (ClOOCl) at 308 nm. Chem Phys Lett: 173, 310, 1990.CrossRefGoogle Scholar
  185. Moortgat, G.K., E. Kudszus, and P. Warneck, Temperature dependence of O(1D) formation in the near UV photolysis of ozone. J Chem Soc, Faraday Trans: 11, 73,1216, 1977.Google Scholar
  186. Moortgat, G.K., W. Klippel, K.H. Mobius, W. Seiler, and P. Warneck, Laboratory measurements of photolytic parameters for formaldehyde. Rep. FAA-EE-80-47, Federal Aviation Administration, Washington, D.C., USA, 1980.Google Scholar
  187. Moortgat, G.K., W. Seiler, and P. Warneck, Photodissociation of HCHO in air: CO and H22 quantum yield at 220 and 300 K. J Chem Phys: 78, 1185, 1983.CrossRefGoogle Scholar
  188. Moortgat, G.K., R. Meller, and W. Schneider, Temperature dependance (256–296 K) of the absorption cross sections of bromoform in the wavelength range 285–360 nm, in Proceedings of NATO workshop on “The Tropospheric Chemistry in the Polar Regions”, Wolfville, Canada, 23–28 August 1992, NATO ASI Series. H. Niki and K.H. Becker (eds.), Springer Verlag, Berlin, 359–369, 1993.Google Scholar
  189. Murray, J.E., K. Yoshino, J. R. Esmond, W. H. Parkinson, Y. Sun, and A. Dalgarno, Vacuum ultraviolet Fourier transform spectroscopy of the δ(0,0) and β(7,0) bands of NO. J Chem Phys: 101, 62, 1994.CrossRefGoogle Scholar
  190. Murtagh, D.P., The O2 Schumann-Runge system: New calculations of photodissociation cross sections. Planet Space Sci: 36, 819, 1988.CrossRefGoogle Scholar
  191. Nesme-Ribes, E., S.L. Baliunes, and D. Sokoloff, The stellar dynamo. Sci Amer: 51, 1996.Google Scholar
  192. Newchurch, M.J., M. Allen, M.R. Gunson, R.J. Salawitch, G.B. Collins, K.H. Huton, M.M. Abbas, M.C. Abrams, A.Y. Chang, D.W. Fahey, R.S. Gao, F.W. Irion, M. Loewenstein, G.L. Manney, H.A. Michelsen, J.R. Podolske, C.P. Rinsland, and R. Zander, Stratospheric NO and NO2 abundances from ATMOS solar-occultation measurements. Geophys Res Lett: 23, 2373, 1996.CrossRefGoogle Scholar
  193. Nickolaisen, S.L., and S.P. Sander, Pressure dependent yields and product branching ratios in the broadband photolysis of chlorine nitrate. J Phys Chem: 100, 10,165, 1996.CrossRefGoogle Scholar
  194. Nicolet, M., Etude des réactions chimiques de l’ozone dans la stratosphere. Royal Meteorological Institute of Belgium, 1978.Google Scholar
  195. Nicolet, M., The chemical equations of stratospheric and mesopheric ozone, Proc of the NATO Advanced Institute on Atmospheric Ozone, A.C. Aikin, ed., U.S. Dept. of Transportation, FAA-EE-80-20, FAA, Washington, D.C., USA, 1980.Google Scholar
  196. Nicolet, M., On the molecular scattering in the terrestrial atmosphere: An empirical formula for its calculation in the homosphere. Planet Space Sci: 32, 1467, 1984.Google Scholar
  197. Nicolet, M., and S. Cieslik, The photodissociation of nitric oxide in the mesophere and stratosphere. Planet Space Sci: 28, 105, 1980.Google Scholar
  198. Nicolet, M., and R. Kennes, Aeronomic problems of molecular oxygen photodissociation, IV. Photodissociation frequency and transmittance in the spectral range of the Schumann-Runge bands. Planet Space Sci: 37, 459, 1989.Google Scholar
  199. Nicolet, M., R.R. Meier, and D.E. Anderson, Radiation field in the troposphere and stratosphere, II. Numerical analysis. Planet Space Sci: 30, 935, 1982.CrossRefGoogle Scholar
  200. Nicolet, M., S. Cieslik, and R. Kennes, Aeronomic problems of molecular oxygen photodissociation, V. Predissociation in the Schumann-Runge bands of oxygen. Planet Space Sci: 37, 427, 1989.Google Scholar
  201. Nicovich, J.M., and P.H. Wine, Temperature-dependent absorption cross section of the hydrogen peroxide vapor, J Geophys Res: 93, 2417, 1988.Google Scholar
  202. Norrish, R.G.W., and F.N. Kirkbride, Primary photochemical processes, I. The decomposition of formaldehyde, J Chem Soc: 1, 1518, 1932.Google Scholar
  203. Ogawa, M., Absorption cross sections of O2 and CO2 continua in the Schumann-Runge and far-UV regions, J Chem Phys Lett: 9, 603, 1971.Google Scholar
  204. Orlando, J.J., and J.B. Burkholder, Gas phase UV visible absorption spectra of HOBr and Br2O, J Phys Chem: 99, 1143, 1995.CrossRefGoogle Scholar
  205. Orlando, J.J., G.S. Tyndall, G.K. Moortgat, and J.G. Calvert, Quantum yields for NO3 photolysis between 570 and 635 nm, J Phys Chem: 97, 10,996, 1993.CrossRefGoogle Scholar
  206. Park, J.H., The equivalent mean absorption cross sections for the O2 Schumann-Runge bands: Application to the H2O and NO photodissociation rates. J Atmos Sci: 312, 1893, 1974.Google Scholar
  207. Penndorf, R., Tables of the refractive index for standard air and the Rayleigh scattering coefficient for the spectral region between 0.2 and 20.0 µm and their application to atmospheric optics. J Opt Soc Amer: 47, 176, 1957.Google Scholar
  208. Penner, S.S., Quantitative Molecular Spectroscopy and Gas Emissivities. Addison-Wesley, Reading, Mass, USA, 1959.Google Scholar
  209. Permien, T., R. Vogt, and R.N. Schindler, Mechanisms of gas phase-liquid phase chemical transformations. Air Pollution Report 17, R.A. Cox, ed., Environmental Research Program of the CEC, Brussels, 1988.Google Scholar
  210. Perner, D., and U. Platt, Absorption of light in the atmosphere by collision pairs of oxygen (O2)2. Geophys Res Lett: 7, 1053, 1980.Google Scholar
  211. Petropavlóvskikh, I., Evaluation of Photodissociation Coefficient Calculations for Use in Atmospheric Chemical Models. Univ. of Brussels and National Center for Atmospheric Research Cooperative Ph.D. Thesis, NCAR/CT-159, 1995.Google Scholar
  212. Ramanathan, V., Radiative transfer within the earth’s troposphere and stratosphere: A simplified radiative-convective model. J Atmos Sci: 33, 1330, 1976.Google Scholar
  213. Rattigan, O.V., R.L. Jones, and R.A. Cox, The visible spectrum of gaseous OBrO. Chem Phys Lett: 230, 121, 1994.CrossRefGoogle Scholar
  214. Rattigan, O.V., D.J. Lary, R.L. Jones, and R.A. Cox, UV-visible absorption cross sections of gaseous Br2O and HOBr. J Geophys Res: 101, 23,021, 1996.CrossRefGoogle Scholar
  215. Rebbert, R.E., R.L. Lilly, and P. Ausloos, Abstract of papers, 164th National Meeting, Association Chemical Society, New York, August 1972.Google Scholar
  216. Richards, P.G., D.G. Torr, and M.A. Torr, Photodissociation of N2: A significant source for thermospheric atomic nitrogen. J Geophys Res: 86, 1495, 1981.Google Scholar
  217. Richards, P.G., J.A. Fennelly, and D.G. Torr, EUVAC: A solar EUV flux model for aeronomic calculations. J Geophys Res: 99, 8981, 1994.Google Scholar
  218. Robbins, D.E., Photodissociation of methyl chloride and methyl bromide in the atmosphere. Geophys Res Lett: 3, 213, 1976. Erratum: Ibid, 757, 1976.Google Scholar
  219. Rodgers, C.D., and C.D. Walshaw, The computation of infra-red cooling rate in planetary atmospheres. Quart J Roy Meteorol Soc: 92, 67, 1966.Google Scholar
  220. Romand, J., Absorption ultraviolette dans la région of Schumann-Runge, Etude de ClH, BrH et IH gazeux. Ann Phys, Paris: 4, 527, 1949.Google Scholar
  221. Romand, J., and B. Vodar, Spectre d’absorption de l’acide chlorhydrique gazeux dans la région de Schumann. Canad Roy Acad Sci Paris: 226, 238, 1948.Google Scholar
  222. Rothman, L.S., C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R.R. Gamache, R.B. Wattson, K. Yoshino, K.V. Chance, K.W. Jucks, L.R. Brown, V. Nemtschinov, and P. Varanasi, The HITRAN molecular spectroscopic data base and HAWKS: 1996 Edition. J Quant Spectrosc Radiat Transfer: 60, 665, 1998.CrossRefGoogle Scholar
  223. Rottman, G.J., T.N. Woods, and T.P. Sparn, Solar stellar irradiance comparison experiment: Instrument design and operation. J Geophys Res: 98, 10,667, 1993.CrossRefGoogle Scholar
  224. Rowland, F.S., and M.J. Molina, Chlorofluoromethanes in the environment. Rev Geophys Space Phys: 13, 1, 1975.Google Scholar
  225. Schiffman, A., D.D. Nelson, Jr., and D.J. Nesbitt, Quantum yields for OH production from 193 and 248 nm photolysis of HNO3 and H2O2. J Chem Phys: 98, 6935, 1993.CrossRefGoogle Scholar
  226. Schneider, W.F., A.K. Moortgat, G.S. Tyndall, and J.P. Burrows, Absorption cross sections of NO2 in the UV and visible region (200–700 nm) at 298K. J of Photochem Photobiol: 40, 195, 1987.Google Scholar
  227. Schoeberl, M.R., and D.F. Strobel, The zonally averaged circulation of the middle atmosphere. J Atmos Sci: 35, 577, 1978.Google Scholar
  228. Schurgers, M., and K.H. Welge, Absorptionskoeffizient von H2O2 und N2H4 zwischen 1200 und 2000 A. Zeit Naturforsch: 23A, 1508, 1968.Google Scholar
  229. Selwyn, G., J. Podolske, and H.S. Johnston, Nitrous oxide ultraviolet absorption spectrum at stratospheric temperatures. Geophys Res Lett: 4, 427, 1977.Google Scholar
  230. Shaw, J., Solar Radiation. Ohio J Sci: 53, 258, 1953.Google Scholar
  231. Shemansky, D.E., CO2 extinction coefficient 1700–3000Å. J Chem Phys: 56, 1582, 1972.CrossRefGoogle Scholar
  232. Shved, G.M., L.E. Khvorostovskaya, I.Y. Potekhin, A.I. Demyanikov, A.A. Kutepov, and V.I. Fomichev, Measurement of the quenching rate constant of CO2(0110)-O collisions and its significance for the thermal regime and radiation in the lower thermosphere, Atmos Oceanic Phys: 27, 295, 1991.Google Scholar
  233. Shved, G.M., Kutepov, A.A., and Ogivalov, V.P., Non-local thermodynamic equilibrium in CO2 in the middle atmosphere, I. Input data and populations of the v3 mode manifold states. J Atmos Solar Terr Phys: 60, 289, 1998.Google Scholar
  234. Silvente, E., R.C. Richter, M. Zheng, E.S. Saltzman, and A.J. Hynes, Relative quantum yields for O1D production in the photolysis of ozone between 301 and 336 nm: Evidence for the participation of a spin forbidden channel. Chem Phys Lett: 264, 309, 1997.CrossRefGoogle Scholar
  235. Simon, P.C., D. Gillotay, N. Vanlaethem-Meurée, and J. Wisemberg, Ultraviolet absorption cross sections of chloro-and chlorofluoro-methane at stratospheric temperatures. J Atmos Chem: 7, 107, 1988.CrossRefGoogle Scholar
  236. Simpson, C.J.S.M., P.D. Gait, and J.M. Simmie, The vibrational deactivation of the bending moe of CO2 by O2 and by N2. Chem Phys Lett: 47, 133, 1977.CrossRefGoogle Scholar
  237. Singer, R.J., J.N. Crowley, J.P. Burrows, W. Schneider, and G.K. Moortgat, Measurement of the absorption cross section of peroxynitric acid between 210 and 330 nm in the range 253–298 K. J Photochem Photobiol: 48, 17, 1989.CrossRefGoogle Scholar
  238. Siskind, D.E., K. Minschwaner, and R.S. Eckman, Photodissociation of oxygen and water vapor in the middle atmosphere: Comparison of numerical methods and impact on modeled ozone and hydroxyl. Geophys Res Lett: 21, 863, 1994.CrossRefGoogle Scholar
  239. Slanger, T.G., and G. Black, Photodissociative channels at 1216 Å for H2O, NH3, and CH4. J Chem Phys: 77, 2432, 1982.CrossRefGoogle Scholar
  240. Smith, F.L., III, and C. Smith, Numerical evaluation of Chapman’s grazing incidence integral Ch (X, x). J Geophys Res: 77, 3592, 1972.Google Scholar
  241. Sobolev, V.V., A Treatise of Radiative Transfer. D. Van Nostrand, 1963.Google Scholar
  242. Spencer, J.E., and F.S. Rowland, Bromine nitrate and its stratospheric significance. J Phys Chem: 82, 7, 1978.Google Scholar
  243. Stamnes, K., S.C. Tsay, W. Wiscombe, and K. Jayaweera, Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layers. Appl Opt: 27, 2502, 1988.CrossRefGoogle Scholar
  244. Steinfeld, J. I., S.M. Adler-Golden, and J. W. Gallagher, Critical survey of data on the spectroscopy and kinetics of ozone in the mesosphere and thermosphere. J Phys Chem: 16, 911, 1987.Google Scholar
  245. Stief, L.J., W.A. Payne, and R.B. Klemm, A flash-photolysis-resonance fluorescence study of the formation of O (1D) in the photolysis of water and the reaction of O (1D) with H2, Ar and He. J Chem Phys: 62, 4000, 1975.CrossRefGoogle Scholar
  246. Stockwell, W.R., and J.C. Calvert, The near ultraviolet absorption spectrum of gaseous HONO and N2O4. J Photochem: 8, 193, 1978.CrossRefGoogle Scholar
  247. Takahashi, K., Y. Matsumi, and M. Kawasaki, Photodissociation processes of ozone in the Huggins band at 308–326 nm: Direct observation of O (1D2) and O (3Pj) products. J Phys Chem: 100, 4084, 1996.Google Scholar
  248. Takahashi, K., N. Taniguchi, Y. Matsumi, M. Kawasaki, and M.N.R. Ashfold, Wavelength and temperature dependence of the absolute O(1D) production yield from the 305–329 nm photodissociation of ozone. J Chem Phys: 108, 7161, 1998.CrossRefGoogle Scholar
  249. Thomas, G.D., and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean. Cambridge University Press, 517 pp., 1999.Google Scholar
  250. Thompson, B.A., P. Harteck, and R.R. Reeves, Jr., Ultraviolet absorption coefficients of CO2 CO, O2, H2O, N2O, NH3, NO, SO2 and CH4 between 1850 and 4000 A. J Geophys Res: 68, 6431, 1963.Google Scholar
  251. Tiwari, S.N., Models for infrared atmospheric radiation. Adv Geophys: 20, 1, 1978.Google Scholar
  252. Toon, O.B., C.P. McKay, T.P. Ackerman, and K. Santhanam, Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J Geophys Res: 94, 16,287, 1989.Google Scholar
  253. Turnipseed, A.A., G.L. Vaghjiani, J.E. Thompson, and A.R. Ravishankara, Photodissociation of HNO3 at 193, 222, and 248 nm: Products and Quantum Yields. J Chem Phys: 96, 5887, 1992.CrossRefGoogle Scholar
  254. Urey, H.C., L.C. Dawsey, and F.O. Rice, The absorption spectrum and decomposition of hydrogen peroxide by light. J Amer Chem Soc: 51, 1371, 1929.Google Scholar
  255. Vaghjiani, G.L., and A.R. Ravishankara, Absorption cross sections of CH3OOH, H2O2 and D2O2 vapors between 210 and 365 nm at 297 K. J Geophys Res: 94, 3487, 1989.Google Scholar
  256. Van de Hulst, H.C., Light Scattering by Small Particles. Wiley, 1957.Google Scholar
  257. Van Hoosier, M.E., J.-D.F. Bartoe, G.E. Brueckner, and D.K. Prinz, Absolute solar spectral irradiance 120 nm–400 nm (Results from the Solar Ultraviolet Irradiance Monitor — SUSIM — experiment on board Spacelab 2). Astrophys Lett Commun: 27, 163, 1988.Google Scholar
  258. Van Laethem-Meurée, N., J. Wisemberg, and P.C. Simon, Absorption des chlorométhanes dans l’ultraviolet: Mesures des sections efficaces d’absorption en fonction de la température. Bull Acad Roy Belgique Cl Sci: 64, 34, 1978a.Google Scholar
  259. Van Laethem-Meurée, N., J. Wisemberg, and P.C. Simon, Influence de la température sur les sections efficaces d’absorption des chlorofluorométhanes dans l’ultraviolet. Bull Acad Roy Belgique Cl Sci: 64, 42, 1978b.Google Scholar
  260. Vasudev R., Absorption spectrum and solar photodissociation of gaseous nitrous acid in the actinic wavelength region. Geophys Res. Lett: 17, 2153, 1990.Google Scholar
  261. Vernazza, J., E.H. Avrett, and R. Loeser, Structure of the solar chromosphere, II. The underlying photosphere and temperature minimum region. Astrophys J: 30, 1, 1976.Google Scholar
  262. Vigroux, E., Contribution expérimentale de l’absorption de l’ozone. Ann Phys, Paris: 8, 709, 1953.Google Scholar
  263. Vigroux, E. Coefficients d’absorption de l’ozone dans la bande de Hartley. Ann Geophys: 25, 169, 1969.Google Scholar
  264. Vodar, M.B., Spectre d’absorption ultraviolet du gaz chlorhydrique et courbe d’energie potentielle de l’état excité de la molecule ClH. J Phys Rad: 9, 166, 1948.Google Scholar
  265. Wahner, A., G.S. Tyndall, and A.R. Ravishankara, Absoprtion cross sections for OClO as a function of temperature in the wavelength range 240–480 nm. J Phys Chem: 91, 2734, 1987.CrossRefGoogle Scholar
  266. Wahner, A., A.R. Ravishankara, S.P. Sander, and R.R. Friedl, Absorption cross section of BrO between 312 and 385 nm at 298 and 223 K. Chem Phys Lett: 152, 507, 1988.CrossRefGoogle Scholar
  267. Watanabe, K., and M. Zelikoff, Absorption coefficient of water vapor in the vacuum ultraviolet. J Opt Soc Amer: 43, 753, 1953.Google Scholar
  268. Watanabe, K., E.C.Y. Inn, and M. Zelikoff, Absorption coefficients of oxygen in the vacuum ultraviolet. J Chem Phys: 21, 1026, 1953.CrossRefGoogle Scholar
  269. Watson, R.T., Rate constants of ClO of atmospheric interest. J Phys Chem Ref Data: 6, 87, 1977.CrossRefGoogle Scholar
  270. Wayne, R.P., The photochemistry of ozone. Atmos Environ: 21, 1683, 1987.Google Scholar
  271. Wayne, R.P., I. Barnes, P. Biggs, J.P. Burrows, C.E. Canosa-Mas, J. Hjorth, G. LeBras, G.K. Moortgag, D. Perher, G. Poulet, G. Restelli, and J. Sidebottom, The nitrate radical: Physics, chemistry and the atmosphere. Atmos Environ: 25A, 1, 1991.Google Scholar
  272. Williams, A.P., and C.D. Rodgers, Radiative transfer by the 15 micron CO2 band in the mesophere. Proc Intl Radiation Symposium, Sendai, Japan, 26 May–2 June 1972.Google Scholar
  273. Wilson, R.C., and H.S. Hudson, The sun’s luminosity over a complete solar cycle. Nature: 351, 42, 1991.Google Scholar
  274. Wintersteiner, P.P., R.H. Picard, R.D. Sharma, J.R. Winick, and R.A. Joseph, Lineby-line radiative excitation model for the nonequilibrium atmosphere: Application to CO2 15 µm emission. J Geophys Res: 97, 18,083, 1992.Google Scholar
  275. World Meteorological Organisation (WMO), The Stratosphere 1981: Theory and Measurements. Report No. 11, Geneva, Switzerland, 1982.Google Scholar
  276. World Meteorological Organisation (WMO), Atmospheric Ozone 1985. Global Ozone Research and Monitoring Project, Report No. 16, Geneva, Switzerland, 1985.Google Scholar
  277. Woods, T.N., and G.J. Rottman, Solar Lyman α irradiance measurements during two solar cycles. J Geophys Res: 102, 8769, 1997.CrossRefGoogle Scholar
  278. Woods, T.N., D.K. Prinz, G.J. Rottman, J. London, P.C. Crane, R.P. Cebula, E. Hilsenrath, G.E. Brueckner, M.D. Andrews, O.R. White, M.E. VanHoosier, L.E. Floyd, L.C. Herring, B.G. Knapp, C.K. Pankratz, and P.A. Reiser, Validation of the UARS solar ultraviolet irradiances: Comparison with the ATLAS 1 and 2 measurements. J Geophys Res: 101, 9541, 1996.Google Scholar
  279. Woods, T.N. G.J. Rottman, S.M. Bailey, S.C. Solomon, and J. Worden, Solar extreme ultraviolet irradiance measurements during solar cycle 22. Solar Physics: 177, 133, 1998.CrossRefGoogle Scholar
  280. Yao, F., I. Wilson, and H. Johnston, Temperature dependent ultraviolet absorption spectrum for dinitrogen pentoxide. J Phys Chem: 86, 3611, 1982.CrossRefGoogle Scholar
  281. Yoshino, K., D.E. Freeman, J.R. Esmond, and W.H. Parkinson, High resolution absorption cross section measurements and band oscillator strengths of the (1,0)–(12,0) Schumann-Runge bands of O2. Planet Space Sci: 31, 339, 1983.CrossRefGoogle Scholar
  282. Yoshino, K., A.S.-C. Cheung, J.R. Esmond, W.H. Parkinson, D.E. Freeman, and S.L. Guberman, Improved absorption cross sections of oxygen in the wavelength region 205–240 nm of the Herzberg continuum. Planet Space Sci: 36, 1469, 1988.Google Scholar
  283. Yoshino, K., J.R. Esmond, D.E. Freeman, and W.H. Parkinson, Measurements of absolute absorption cross sections of ozone in the 185 to 254 nm wavelength region and the temperature dependence. J Geophys Res: 98, 5205, 1993.Google Scholar
  284. Yoshino, K., J.R. Esmond, Y. Sun, and W.H. Parkinson, Absorption cross section measurements of carbon dioxide in the wavelength region 118.7–175.5 nm and the temperature dependence. Spectrosc Ra: 55, 53, 1996a.Google Scholar
  285. Yoshino, K., J.R. Esmond, W.H. Parkinson, K. Ito, and T. Matsui, Absorption cross section measurements of water vapor in the wavelength region 120 to 188 nm. Japan Chem Phys: 211, 387, 1996b.Google Scholar
  286. Zhu, X., J.-H. Yee, S.A. Lloyd, and D.F. Storbel, Numerical modeling of chemicaldynamical coupling in the upper stratosphere and mesosphere. J Geophys Res: 104, 23,995, 1999.Google Scholar

Copyright information

© Springer 2005

Personalised recommendations