Advertisement

Dynamics and Transport

Part of the Atmospheric and Oceanographic Sciences Library book series (ATSL, volume 32)

Keywords

Gravity Wave Zonal Wind Rossby Wave Potential Vorticity Planetary Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, D.G., and M.E. McIntyre, Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the zonal mean acceleration. J Atmos Sci: 33, 2031, 1976.Google Scholar
  2. Andrews, D.G., and M.E. McIntyre, An exact theory of nonlinear waves on a Lagrangian mean flow. J Fluid Mech: 89, 609, 1978.Google Scholar
  3. Andrews, D.G., J.R. Holton, and C.B. Leovy, Middle Atmosphere Dynamics. Academic Press, 1987.Google Scholar
  4. Appenzeller, C., Wave developments on surface fronts and stratospheric intrusions. Ph.D. thesis, 1117 pp., ETH, Zurich, Switzerland, 1994.Google Scholar
  5. Arakawa, A., Computational design for long-term numerical integration of the equations of fluid motions: Two-dimensional incompressible flow. J Comput Phys: 1, 119, 1966.CrossRefGoogle Scholar
  6. Austin, J., N. Butchard, and K.P. Shine, Possibility of an Arctic ozone hole in a doubled-CO2 climate. Nature: 360, 221, 1992.CrossRefGoogle Scholar
  7. Baldwin, M.P., X. Cheng, and T.J. Dunkerton, Observed correlations between winter-mean tropospheric and stratospheric circulation anomalies. Geophys Res Lett: 2, 1141, 1994.Google Scholar
  8. Baldwin, M.P., and T.J. Dunkerton, Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J Geophys Res: 104, 30,937, 1999.CrossRefGoogle Scholar
  9. Baldwin, M.P., and T.J. Dunkerton, Stratospheric harbingers of anomalous weather regimes. Science: 294, 581, 2001.CrossRefGoogle Scholar
  10. Baldwin, M.P., L.J. Gray, T.J. Dunkerton, K. Hamilton, P.H. Haynes, W.J. Randal, J.R. Holton, M.J. Alexander, I. Hirota, T. Horinouchi, D.B.A. Jones, J.S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, The quasi-biennial oscillation. Rev Geophys: 39, 179, 2001.CrossRefGoogle Scholar
  11. Banks, P.M., and G. Kockarts, Aeronomy. Academic Press, 1973.Google Scholar
  12. Beagley, S.R., J. de Grandpré, J.N. Koshyk, N.A. McFarlane, and T.G. Shepherd, Radiative-dynamical climatology of the first-generation Canadian middle atmosphere model. Atmos Ocean: 35, 293, 1997.Google Scholar
  13. Becker, E., and G. Schmitz, Energy deposition and turbulent dissipation owing to gravity waves in the mesosphere. J Atmos Sci: 59, 54, 2001.Google Scholar
  14. Bischof, W., R. Borchers, P. Fabian, and B.C. Kruger, Increased concentration and vertical distribution of carbon dioxide in the stratosphere. Nature: 316, 708, 1985.CrossRefGoogle Scholar
  15. Boering, K.A., S.C. Wofsy, B.C. Daube, H.R. Schneider, M. Loewenstein, J.R. Podolske, and T.J. Conway, Stratospheric mean ages and transport rates from observations of atmospheric CO2 and N2O. Science: 274, 1340, 1996.CrossRefGoogle Scholar
  16. Bott, A., A positive definite advection scheme obtained by nonlinear normalization of the advective fluxes. Mon Weath Rev: 117, 1006, 1989Google Scholar
  17. Bourke, W., An efficient, one-level primitive equation spectral model. Mon Weath Rev: 100, 683, 1972.Google Scholar
  18. Boville, B.A., The influence of the polar night jet on the tropospheric circulation in a GCM. J Atmos Sci: 41, 1132, 1984.CrossRefGoogle Scholar
  19. Boville, B.A., Middle atmosphere version of CCM2 (MACCM2): Annual cycle and interannual variability. J Geophys Res: 100, 9017, 1995.CrossRefGoogle Scholar
  20. Boyd, J.P., The noninteraction of waves with the zonally-averaged flow on a spherical Earth, and the interrelationship of eddy fluxes of energy, heat and momentum. J Atmos Sci: 33, 2285, 1976.CrossRefGoogle Scholar
  21. Brasseur, G.P., M.H. Hitchman, S. Walters, M. Dymek, E. Falise, and M. Pirre, An interactive chemical dynamical radiative two-dimensional model of the middle atmosphere. J Geophys Res: 95, 5639, 1990.Google Scholar
  22. Brasseur, G.P., X.X. Tie, P.J. Rasch, and F. Lefèvre, A three-dimensional simulation of the Antarctic ozone hole: Impact of anthropogenic chlorine on the lower stratosphere and upper troposphere. J Geophys Res: 102, 8909, 1997.CrossRefGoogle Scholar
  23. Brasseur, G.P., J.J. Orlando, and G.S. Tyndall, Atmospheric Chemistry and Global Change. Oxford University Press, 1999.Google Scholar
  24. Brasseur, G.P., A.K. Smith, R. Khosravi, T. Huang, and S. Walters, Natural and human-induced perturbations in the middle atmosphere: A short tutorial, in: Atmospheric Science Across the Stratopause, Geophys Monograph 123: 7. American Geophysical Union, 2000.Google Scholar
  25. Brewer, A.W., Evidence for a world circulation provided by measurements of helium and water vapor distribution in the stratosphere. Quart J Roy Meteorol Soc: 75, 351, 1949.Google Scholar
  26. Burrage, M.D., W.R. Skinner, D.A. Gell, P.B. Hays, A.R. Marshall, D.A. Ortland, A.H. Manson, S.J. Franke, D.C. Fritts, P. Hoffman, C. McLandress, R. Niciejewski, F.J. Schmidlin, G.G. Shepherd, W. Singer, T. Tsuda, and R.A. Vincent, Validation of mesosphere and lower thermosphere winds from the high resolution Doppler images on UARS. J Geophys Res: 101, 10,365, 1996.Google Scholar
  27. Campbell, I.M., Energy and the Atmosphere. John Wiley and Sons, 1977.Google Scholar
  28. Chang, A.Y., R.J. Salawitch, H.A. Michelsen, M.R. Gunson, M.C. Abrams, R. Zander, C.P. Rinsland, M. Loewenstein, J.R. Podolske, M.H. Proffitt, J.J. Margitan, D.W. Fahey, R.-S. Gao, K.K. Kelly, J.W. Elkins, C.R. Webster, R.D. May, K.R. Chan, M.M. Abbas, A. Goldman, F.W. Irion, G.L. Manney, M.J. Newchurch, and G.P. Stiller, A comparison of measurements from ATMOS and instruments aboard the ER-2 aircraft: Tracers of atmospheric transport. Geophys Res Lett: 23, 2389, 1996a.Google Scholar
  29. Chang, A.Y., R.J. Salawitch, H.A. Michelsen, M.R. Gunson, M.C. Abrams, R. Zander, C.P. Rinsland, J.W. Elkins, G.S. Dutton, C.M. Volk, C.R. Webster, R.D. May, D.W. Fahey, R.-S. Gao, M. Loewenstein, J.R. Podolske, R.M. Stimpfle, D.W. Kohn, M.H. Proffitt, J.J. Margitan, K.R. Chan, M.M. Abbas, A. Goldman, F.W. Irion, G.L. Manney, M.J. Newchurch, and G.P. Stiller, A comparison of measurements from ATMOS and instruments aboard the ER-2 aircraft: Halogenated compounds. Geophys Res Lett: 23, 2393, 1996b.Google Scholar
  30. Chapman, S., and T.G. Cowling, The Mathematical Theory of Non-uniform Gases. 3rd ed., Cambridge University Press, 1970.Google Scholar
  31. Chapman, S., and R.S. Lindzen, Atmospheric Tides. D. Reidel, The Netherlands, 1970.Google Scholar
  32. Charney, J.G., and P.G. Drazin, Propogation of planetary-scale disturbances from the lower into the upper atmosphere. J Geophys Res: 66, 83, 1961.Google Scholar
  33. Chen, P., Isentropic cross-tropopause mass exchange in the extratropics. J Geophys Res: 100, 16,661, 1995.Google Scholar
  34. Chiba, M., K. Yamazaki, K. Shibata, and Y. Kuroda, The description of the MRI atmospheric spectral GCM (MRI-GSPM) and its mean statistics based on a 10-year integration. Pap Meteorol Geophys: 47, 1, 1996.Google Scholar
  35. Chipperfield, M.P., D. Cariolle, P. Simon, R. Ramaroson, and D.J. Lary, A three-dimensional modeling study of trace species in the Arctic lower stratosphere during winter 1989–1990. J Geophys Res: 98, 7199, 1993.Google Scholar
  36. Coffey, M.T., W.G. Mankin, and J.W. Hannigan, A reconstructed view of polar stratospheric chemistry. J Geophys Res: 104, 8295, 1999.Google Scholar
  37. Crutzen, P.J., A two-dimensional photochemical model of the atmosphere below 55 km: Estimates of natural and man-caused perturbations due to NOx, in Proc Fourth Conf on CIAP, DOT-TSC-OST-38, 1975.Google Scholar
  38. Cunnold, D.M., F. Alyea, N. Phillips, and R.G. Prinn, A three-dimensional dynamical-chemical model of atmospheric ozone. J Atmos Sci: 32, 170, 1975.Google Scholar
  39. Danielsen, E.F., Trajectories: Isobaric, isentropic, and actual. J Meteorol: 18, 479, 1961.Google Scholar
  40. de Grandpré, J., J.W. Sandilands, J.C. McConnell, S.R. Beagley, P.C. Croteau, and M.Y. Danilin, Canadian middle atmosphere model: Preliminary results from the chemical transport module. Atmos Ocean: 35, 385, 1997.Google Scholar
  41. Déqué, M., C. Dreveton, A. Braun, and D. Cariolle, The ARPEGE/IFS atmospheric model: A contribution to the French community climate modelling. Clim Dyn: 10, 249, 1994.Google Scholar
  42. Dickinson, R.E., E.C. Ridley, and R.G. Roble, Meridional circulation in the thermosphere, I. Equinox conditions. J Atmos Sci: 32, 1737, 1975.Google Scholar
  43. Dickinson, R.E., E.C. Ridley, and R.G. Roble, Meridional circulation in the thermosphere. J Atmos Sci: 34, 178, 1977.CrossRefGoogle Scholar
  44. Dobson, G.M.G., Origin and distribution of polyatomic molecules in the atmosphere. Proc Roy Soc Lond A: 236, 187, 1956.Google Scholar
  45. Dunkerton, T., On the mean meridional mass motions of the stratosphere and mesosphere. J Atmos Sci: 35, 2325, 1978.CrossRefGoogle Scholar
  46. Dunkerton, T., C.P.F. Hsu, and M.E. McIntyre, Some Eulerian and Lagrangian diagnostics for a model stratospheric warming. J Atmos Sci: 38, 819, 1981.Google Scholar
  47. Dunkerton, T.J., The role of gravity waves in the quasi-biennial oscillation. J Geophys Res: 102, 26,053, 1997.Google Scholar
  48. Dunkerton, T. J., and D. P. Delisi, Climatology of the equatorial lower stratosphere. J Atmos Science: 42, 376, 1985.Google Scholar
  49. Elkins, J.W., D.W. Fahey, J.M. Gilligan, G.S. Dutton, T.J. Baring, C.M. Volk, R.E. Dunn, R.C. Myers, S.A. Montzka, P.R. Wamsley, A.H. Hayden, J.H. Butler, T.M. Thompson, T.H. Swanson, E.J. Dlugokencky, P.C. Novelli, D.F. Hurst, J.M. Lobert, S.J. Ciciora, R.J. McLaughlin, T.L. Thompson, R.H. Winkler, P.J. Fraser, L.P. Steele, and M.P. Lucarelli, Airborne gas chromatograph for in situ measurements of long-lived species in the upper troposphere and lower stratosphere. Geophys Res Lett: 23, 347, 1996.CrossRefGoogle Scholar
  50. Ertel, H., Ein neuer hydrodynamischer Wirbelsatz. Meteorol Z: 59, 271, 1942.Google Scholar
  51. Exner, F.M., Sitzungberichte der Mathematisch-Naturwissenschaftlichen Klasse der Akad. Wissenschaften, 122 Abt. 2a, 2. Halbband 6(10), 1165, 1913.Google Scholar
  52. Feely, H.W., and J.S. Spar, Tungsten-185 from nuclear bomb tests as a tracer for stratospheric meteorology. Nature: 188, 1062, 1960.Google Scholar
  53. Fels, S.B., J.D. Mahlman, M.D. Schwarzkopf, and R.W. Sinclair, Stratospheric sensitivity to perturbations in ozone and carbon dioxide: Radiative and dynamical response. J Atmos Sci: 37, 2265, 1980.CrossRefGoogle Scholar
  54. Fels, S.B., Radiative-dynamical interactions in the middle atmosphere. Adv Geophys: 28A, 277, 1985.Google Scholar
  55. Fleming, E.L., S. Chandra, M.R. Schoeberl, and J.J. Barnett, Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0–120 km. NASA Tech Memo 100687, 85 pp., 1988.Google Scholar
  56. Fleming, E.L., C.H. Jackman, R.S. Stolarski, and D.B. Considine, Simulation of stratospheric tracers using an improved empirically-based two-dimensional model transport formulation. J Geophys Res: 104, 23,911, 1999.Google Scholar
  57. Folkins, I., M. Loewenstein, J. Podolske, S. Oltmans, and M. Proffitt, A barrier to vertical mixing at 14 km in the tropics: Evidence from ozonesondes and aircraft measurements. J Geophys Res: 104, 22,095, 1999.CrossRefGoogle Scholar
  58. Forbes, J.M., Atmospheric tides: 1. Model description and results for the solar diurnal tides. J Geophys Res: 87, 5222, 1982a.Google Scholar
  59. Forbes, J.M., Atmospheric tides: 2. Solar and lunar semidiurnal components. J Geophys Res: 87, 5241, 1982b.Google Scholar
  60. Fritts, D.C., and R.A. Vincent, Mesospheric momentum flux studies at Adelaide, Australia: Observations of gravity wave/tidal interaction model. J Atmos Sci: 44, 605, 1987.Google Scholar
  61. Fritts, D.C., and W. Lu, Spectral estimates of gravity wave energy and momentum fluxes, II. Parameterization of wave forcing and variability. J Atmos Sci: 50, 3695, 1993.Google Scholar
  62. Garcia, R.R., and D.L. Hartmann, The role of planetary waves in the maintenance of the zonally averaged ozone distribution of the upper stratosphere. J Atmos Sci: 37, 2248, 1980.CrossRefGoogle Scholar
  63. Garcia, R.R., and S. Solomon, A numerical model of the zonally averaged dynamical and chemical structure of the middle atmosphere. J Geophys Res: 88, 1379, 1983.Google Scholar
  64. Garcia, R.R., and S. Solomon, The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J Geophys Res: 90, 3850, 1985.Google Scholar
  65. Gault, W.A., G. Thuillier G.G. Shepherd, S.P. Zhang, R.H. Wiens, W.E. Ward, C. Tai, B.H. Solheim, Y.J. Rochon, C. McLandress, C. Lathuillere, V. Fauliot, M. Hersé, C.H. Hersom, R. Gattinger, L. Bourg, M.D. Burrage, S.J. Franke, G. Hernandez, A. Manson, R. Niciejewski, and R.A. Vincent, Validation of O(1S) wind measurements by WINDII: The wind imaging interferometer on UARS. J Geophys Res: 101, 10,405, 1996.CrossRefGoogle Scholar
  66. Gavrilov, N.M., and R.G. Roble, The effect of gravity waves on the global mean temperature and composition structure of the upper atmosphere. J Geophys Res: 99, 25,773, 1994.Google Scholar
  67. Geller, M.A., and J.C. Alpert, Planetary wave coupling between the troposphere and the middle atmosphere as a possible sun-weather mechanism. J Atmos Sci: 37, 1197, 1980.CrossRefGoogle Scholar
  68. Geller, M.A., Dynamics of the middle atmosphere. Space Sci Rev: 34, 359, 1983.CrossRefGoogle Scholar
  69. Gombosi, T.I., Physics of the Space Environment. Cambridge University Press, 1998.Google Scholar
  70. Graf, H.-F., I. Kirchner, A. Robock, and I. Schult, Pinatubo eruption winter climate effects: Model versus observations. Climate Dyn: 9, 81, 1993.Google Scholar
  71. Graf, H.-F., J. Perlwitz, and I. Kirchner, Northern hemisphere tropospheric midlatitute circulation after violent volcanic eruptions. Contrib Atmos Phys: 67, 3, 1994.Google Scholar
  72. Grant, W.B., E.V. Browell, C.S. Long, L.L. Stowe, R.G. Grainger, and A. Lambert, Use of volcanic aerosols to study the tropical stratospheric reservoir. J Geophys Res: 101, 3973, 1996.CrossRefGoogle Scholar
  73. Grose, W.L., J.E. Nealy, R.E. Turner, and W.T. Blackshear, Modeling the transport of chemically active constituents in the stratosphere, in Transport Processes in the Middle Atmosphere. G. Visconti, and R. Garcia, eds., 229, D. Reidel, Massachusetts, 1987.Google Scholar
  74. Hagan, M.E., Modeling atmospheric tidal propagation across the stratopause, in: Atmospheric Science Across the Stratopause. Geophysical Monograph: 123, 177, American Geophysical Union, 2000.Google Scholar
  75. Hall, T.M., and M.J. Prather, Simulations of the trend and annual cycle in stratospheric CO2. J Geophys Res: 98, 10,573, 1993.Google Scholar
  76. Hall, T.M., and R.A. Plumb, Age as a diagnostic of stratospheric transport. J Geophys Res: 99, 1059, 1994.Google Scholar
  77. Hall, T.M., and D.W. Waugh, Timescales for the stratospheric circulation derived from tracers. J Geophys Res: 102, 8991, 1997.Google Scholar
  78. Hall, T.M., et al., 2. Transport experiments, in Models and Measurements Intercomparison II. J.H. Park, M.K.W. Ko, C.H. Jackman, R.A. Plumb, J.A. Kaye, and K.H. Sages, eds., NASA/TM-1999-209554, 1999.Google Scholar
  79. Hamilton, K., R.J. Wilson, J.D. Mahlman, and L.J. Umscheid, Climatology of the GFDL SKYHI general circulation model. J Atmos Sci: 52, 44, 1995.Google Scholar
  80. Hare, F.K., and B.W. Boville, The Polar Circulation. Tech. Note 70, World Meteorological Organization, Geneva, 1965.Google Scholar
  81. Harwood, R.S., and J.A. Pyle, A two-dimensional mean circulation model for the atmosphere below 80 km. Quart J Roy Meteorol Soc: 101, 723, 1975.Google Scholar
  82. Hartmann, D.L., Some aspects of the coupling between radiation, chemistry, and dynamics in the stratosphere. J Geophys Res: 86, 9631, 1981.Google Scholar
  83. Hasebe, F., Quasi-biennial oscillations of ozone and diabatic circulation in the equatorial stratosphere. J Atmos Sci: 51, 729, 1994.CrossRefGoogle Scholar
  84. Hauchecorne, A., M.L. Chanin, and R. Wilson, Mesospheric temperature inversion and gravity wave breaking. Geophys Res Lett: 14, 933, 1987.Google Scholar
  85. Haynes, P.H., C.J. Marks, M.E. McIntyre, T.G. Shepherd, and K.P. Shine, On the “downward control” of extratropical diabatic circulation by eddy-induced mean zonal forces. J Atmos Sci: 48, 651, 1991.CrossRefGoogle Scholar
  86. Hays, P.B., V.J. Abreu, M.E. Dobbs, D.A. Gell, H.J. Grassl, and W.R. Skinner, The high-resolution Doppler imager on the Upper Atmosphere Research Satellite. J Geophys Res: 98, 10,713, 1993.Google Scholar
  87. Hays, P.B., D.L. Wu, and the HRDI Science Team, Observations of the diurnal tide from space. J Atmos Sci: 51, 3077, 1994.CrossRefGoogle Scholar
  88. Hines, C.O., Doppler spread parameterization of gravity wave momentum deposition in the middle atmosphere, Part 1: Basic formulation. J Atmos Solar Terr Phys: 59, 371, 1997a.Google Scholar
  89. Hines, C.O., Doppler spread parameterization of gravity wave momentum deposition in the middle atmosphere, Part 2: Broad and qausi-monochromatic spectra and implementation. J Atmos Solar Terr Phys: 59, 387, 1997b.Google Scholar
  90. Hitchman, M.H., C.B. Leovy, J.C. Gille, and P.L. Bailey, Quasi-stationary zonally assymmetric circulations in the equatorial lower mesosphere, J Atmos Sci: 44, 2219, 1987.CrossRefGoogle Scholar
  91. Holton, J.R., and R.S. Lindzen, An updated theory for the quasi-biennial cycle of the tropical stratosphere. J Atmos Sci: 29, 1076, 1972.Google Scholar
  92. Holton, J.R., A semi-spectral numerical model for wave, mean flow interactions in the stratosphere: Application to sudden stratospheric warmings. J Atmos Sci: 33, 1639, 1976.Google Scholar
  93. Holton, J.R., and W.M. Wehrbein, The role of forced planetary waves in the annual cycle of the zonal mean circulation of the middle atmosphere. J Atmos Sci: 37, 1968, 1980.Google Scholar
  94. Holton, J.R., The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J Atmos Sci: 39, 791, 1982.CrossRefGoogle Scholar
  95. Holton, J.R., The influence of gravity wave breaking on the general circulation of the middle atmosphere. J Atmos Sci: 40, 2497, 1983.CrossRefGoogle Scholar
  96. Holton, J.R., and M.R. Schoeberl, The role of gravity wave generated advection and diffusion in transport of tracers in the mesosphere. J Geophys Res: 93, 11,075, 1988.Google Scholar
  97. Holton, J.R., and J. Austin, The influence of equatorial QBO on sudden stratospheric warmings. J Atmos Sci: 48, 607, 1991.CrossRefGoogle Scholar
  98. Holton, J.R., Introduction to Dynamic Meteorology. 3rd ed. Academic Press, 1992.Google Scholar
  99. Holton, J.R., P.H. Haynes, M.E. McIntyre, A.R. Douglass, R.B. Rood, and L. Pfister, Stratosphere-troposphere exchange. Rev Geophys: 33, 403, 1995.CrossRefGoogle Scholar
  100. Holton, J.R., and M.J. Alexander, The role of waves in the transport circulation of the middle atmosphere, in: Atmospheric Science Across the Stratopause, Geophys Monograph: 123, 21, American Geophysical Union, 2000.Google Scholar
  101. Hong, S.-S., and R.S. Lindzen, Solar semi-diurnal tide in the thermosphere. J Atmos Sci: 33, 135, 1976.CrossRefGoogle Scholar
  102. Hoppel, K.W., K.P. Bowman, and R.M. Bevilacqua, Northern hemisphere summer ozone variability observed by POAMII. Geophys Res Lett: 26, 827, 1999.CrossRefGoogle Scholar
  103. Hoskins, B.J., M.E. McIntyre, and A.W. Robertson, On the use and significance of isentropic potential vorticity maps. Quart J Roy Meteorol Soc: 111, 877, 1985.CrossRefGoogle Scholar
  104. Huang, T.Y.W., and A.K. Smith, The mesospheric diabatic circulation and the parameterized thermal effect of gravity wave breaking on the circulation. J Atmos Sci: 48, 1093, 1991.Google Scholar
  105. Hunt, B.G., and S. Manabe, Experiments with a stratospheric general circulation model, II. Large scale diffusion of tracers in the stratosphere. Mon Weath Rev: 96, 503, 1968.Google Scholar
  106. Hunt, B., Experiments with a stratospheric general circulation model, III. Large scale diffusion of ozone including photochemistry. Mon Weath Rev: 97, 287, 1969.Google Scholar
  107. James, I.N., Introduction to Circulatory Atmospheres, Cambridge University Press, 1994.Google Scholar
  108. Juckes, M.N., and M.E. McIntyre, A high-resolution, one layer model of breaking planetary waves in the stratosphere. Nature: 328, 590, 1987.CrossRefGoogle Scholar
  109. Juckes, M., A generalization of the transformed Eulerian-mean meridional circulation. Quart J Roy Meteorol Soc: 127, 147, 2001.CrossRefGoogle Scholar
  110. Julian, P.R., and K.B. Labitzke, A study of atmospheric energetics during the January–February 1963 stratospheric warming. J Atmos Sci: 22, 597, 1965.CrossRefGoogle Scholar
  111. Kasting, J.F., and R.G. Roble, A zonally averaged chemical-dynamical model of the lower thermosphere. J Geophys Res: 86, 964l, 1981.Google Scholar
  112. Kawahira, K., A two-dimensional model for ozone changes by planetary waves in the stratosphere, I. Formulation and the effect of temperature waves on the zonal mean ozone concentration. J Meteorol Soc Japan: 60, 1058, 1982.Google Scholar
  113. Kida, H., General circulation of air parcels and transport characteristics derived from a hemispheric GCM, Part 1. A determination of advective mass flow in the lower stratosphere. J Meteorol Soc Japan: 61, 171, 1983.Google Scholar
  114. Kitoh, A., Y. Noda, Y. Nikaidou, T. Ose, and T. Tokioka, AMIP simulations of the MRI GCM. Pap Meteor Geophys: 45, 121, 1995.CrossRefGoogle Scholar
  115. Kodera, K., and K. Yamazaki, Long-term variation of upper stratospheric circulation in the Northern hemisphere in December. J Meteorol Soc Japan: 68, 101, 1990.Google Scholar
  116. Kodera, K., M. Chiba, K. Yamazaki, and K. Shibata, A possible influence of the polar night stratospheric jet on the subtropical tropospheric jet. J Meteorol Soc Japan: 69, 715, 1991.Google Scholar
  117. Kodera, K., Influence of volcanic eruptions on the troposphere through stratospheric dynamical processes in the Northern hemisphere winter. J Geophys Res: 99, 1273, 1994.CrossRefGoogle Scholar
  118. Kodera, K., and K. Yamazaki, A possible influence of recent polar stratospheric coolings on the troposphere in the Northern hemisphere winter. Geophys Res Lett: 21, 809, 1994.CrossRefGoogle Scholar
  119. Kodera, K., M. Chiba, H. Koide, A. Kitoh, and Y. Nikaidou, Interannual variability of the winter stratosphere and troposphere in the Northern hemisphere. J Meteorol Soc Japan: 74, 365, 1996.Google Scholar
  120. Kodera, K., and Y. Kuroda, Tropospheric and stratospheric aspects of the Arctic oscillation. Geophys Res Lett: 27, 3349, 2000a.CrossRefGoogle Scholar
  121. Kodera, K., and Y. Kuroda, A mechanistic model study of slowly propagating coupled stratosphere-troposphere variability. J Geophys Res: 105, 12,361, 2000b.Google Scholar
  122. Lait, L., An alternative form of potential vorticity. J Atmos Sci: 12, 1754, 1994.Google Scholar
  123. Labitzke, K., Climatology of the stratosphere and mesosphere. Philos Trans R Soc London: 296, 7, 1980.Google Scholar
  124. Labitzke, K., and H. van Loon, Association between the 11-year solar cycle, the QBO and the atmosphere, Part I: The troposphere and the stratosphere in the northern hemisphere in winter. J Atmos Terr Phys: 50, 197, 1988.CrossRefGoogle Scholar
  125. Langematz, U., and S. Pawson, The Berlin troposphere-stratosphere-mesosphere GCM: Climatology and annual cycle. Quart J Roy Meteorol Soc: 123, 1075, 1997.CrossRefGoogle Scholar
  126. Lefèvre, F., G.P. Brasseur, I. Folkins, A.K. Smith, and P. Simon, The chemistry of the 1991–92 stratospheric winter: Three-dimensional model simulation. J Geophys Res: 99, 8183, 1994.Google Scholar
  127. Leovy, C., Simple models of thermally driven mesospheric circulation. J Atmos Sci: 21, 327, 1964.Google Scholar
  128. Leovy, C., Photochemical de-stabilization of gravity wave near the mesopause. J Atmos Sci: 23, 223, 1966.CrossRefGoogle Scholar
  129. Levy, H., J.D. Mahlman, and W.J. Moxim, A preliminary report on the numerical simulation of the three-dimensional structure and variability of atmospheric N2O. Geophys Res Lett: 6, 155, 1979.Google Scholar
  130. Lieberman, R.S., A.K. Smith, S.J. Franke, R.A. Vincent, J.R. Isler, A.H. Manson, C.E. Meek, G.J. Fraser, A. Fahrutdinova, T. Thayaparan, W. Hocking, J. MacDougall, T. Nakamura, and T. Tsuda, Comparison of mesospheric and lower thermospheric residual wind with High Resolution Doppler Imager, medium frequency, and meteor radar winds. J Geophys Res: 105, 27,023, 2000.Google Scholar
  131. Lin, S.J., and R.B. Rood, Multidimensional flux-form semi-Lagrangian transport schemes. Mon Weath Rev: 124, 2046, 1996.CrossRefGoogle Scholar
  132. Lindzen, R.S., Thermally driven diurnal tide in the atmosphere. Quart J Roy Meteorol Soc: 93, 18, 1967.Google Scholar
  133. Lindzen, R.S., and J.R. Holton, A theory of the quasi-biennial oscillation. J Atmos Sci: 22, 341, 1968.Google Scholar
  134. Lindzen, R.S., and D. Blake, Mean heating of the thermosphere by tides. J Geophys Res: 75, 6868, 1970.Google Scholar
  135. Lindzen, R.S., Turbulence and stress owing to gravity wave and tidal breakdown. J Geophys Res: 86, 9707, 1981.Google Scholar
  136. Liu, H.L., and M.E. Hagan, Local heating/cooling of the mesosphere due to gravity wave and tidal coupling. Geophys Res Lett: 25, 2941, 1998.Google Scholar
  137. Loewenstein, M., J.R. Podolske, K.R. Chan, and S.E. Strahan, Nitrous oxide as a dynamical tracer in the 1987 Airborne Antarctic Ozone Experiment. J Geophys Res: 94, 11,598, 1989.CrossRefGoogle Scholar
  138. London, J.L., Radiative energy sources and sinks in the stratosphere and mesosphere, Proc NATO Advanced Study Institute on Atmospheric Ozone FAA-EE-80-20, NTIS, Springfield, Va., 1980.Google Scholar
  139. Mahlman, J.D., and W.J. Moxim, Tracer simulation using a global general circulation model: Results from a mid-latitude instantaneous source experiment. J Atmos Sci: 35, 1340, 1978.CrossRefGoogle Scholar
  140. Mahlman, J.D., and L.J. Umscheid, Dynamics of the middle atmosphere: Successes and problems of the GFDL “SKIHI” general circulation model, in Proc of the U.S.-Japan Seminar on Middle Atmosphere Dynamics, Terra Scientific Pub., Tokyo, 1983.Google Scholar
  141. Makhlouf, U.B., R.H. Picard, and J.R. Winick, Photochemical-dynamical modeling of the measured response of airglow to gravity waves, 1. Basic model for OH airglow. J Geophys Res: 100, 11,289, 1995.CrossRefGoogle Scholar
  142. Makhlouf, U.B., R.H. Picard, J.R. Winick, and T.F. Tuan, A model for the response of the atomic oxygen 557.7 nm and the OH Meinal airglow to atmospheric gravity waves in a realistic atmosphere. J Geophys Res: 103, 6261, 1998.CrossRefGoogle Scholar
  143. Manabe, S., and B.G. Hunt, Experiments with a stratospheric general circulation model, I. Radiative and dynamic aspects. Mon Weath Rev: 96, 477, 1968.Google Scholar
  144. Manzini, E., N.A. McFarlane, and C. McLandress, Impact of the Doppler-spread parameterization on the simulation of the middle atmosphere circulation using the MA/ECHAM4 general circulation model. J Geophys Res: 102, 25,751, 1997.CrossRefGoogle Scholar
  145. Matsuno, T., Vertical propagation of stationary planetary waves in the Northern hemisphere. J Atmos Sci: 27, 871, 1970.CrossRefGoogle Scholar
  146. Matsuno, T., A dynamical model of the stratospheric sudden warming. J Atmos Sci: 28, 1479, 1971.CrossRefGoogle Scholar
  147. Matsuno, T., and K. Nakamura, The Eulerian and Lagrangian mean meridional circulations in the stratosphere at the time of a sudden warming. J Atmos Sci: 36, 640, 1979.CrossRefGoogle Scholar
  148. Matsuno, T., Lagrangian motion of air parcels in the stratosphere in the presence of planetary waves. Pure Appl Geophys: 118, 189, 1980.CrossRefGoogle Scholar
  149. Matsuno, T., Quasi-geostrophic motions in the equatorial area. J Meteorol Soc Japan: 44, 25, 1986.Google Scholar
  150. McIntyre, M.E., Towards a Lagrangian mean description of stratospheric circulations and chemical transports. Philos Trans R Soc London: 296, 129, 1980.CrossRefGoogle Scholar
  151. McIntyre, M.E., and T.N. Palmer, Breaking planetary waves in the stratosphere. Nature: 305, 593, 1983.CrossRefGoogle Scholar
  152. McIntyre, M.E., and T.N. Palmer, The “surf zone” in the stratosphere. J Terr Phys: 46, 825, 1984.Google Scholar
  153. McIntyre, M.E., Middle atmosphere dynamics and transport: Some current challenges to our understanding, in Dynamics, Transport, and Photochemistry of the Southern Hemisphere, A. O’Neill (ed.), Kluwer, Dordrecht, 1990.Google Scholar
  154. McLandress, C., G.S. Shepherd, B.H. Solheim, M.D. Burrage, P.B. Hays, and W.R. Skinner, Combined mesosphere/thermosphere winds using WINDII and HRDI data from the Upper Atmosphere Research Satellite. J Geophys Res: 101, 10,441, 1996.Google Scholar
  155. Mechoso, C.R., K. Yamazaki, A. Kitoh, and A. Arakawa, Numerical forecasts of atmospheric warming events during the winter of 1979. Mon Weath Rev: 113, 1015, 1985.CrossRefGoogle Scholar
  156. Medvedev, A.S., and G.P. Klaassen, Vertical evolution of gravity wave spectra and the parameterization of associated wave drag. J Geophys Res: 100, 25,841, 1995.CrossRefGoogle Scholar
  157. Mote, P.W., K.H. Rosenlof, J.R. Holton, R.S. Harwood, and J.W. Waters, Seasonal variations of water vapor in the tropical lower stratosphere. Geophys Res Lett: 22, 1093, 1995.Google Scholar
  158. Murgatroyd, R.J., and F. Singleton, Possible meridional circulations in the stratosphere and mesosphere. Quart J Roy Meteorol Soc: 87, 125, 1961.Google Scholar
  159. Murgatroyd, R.J., Dynamical modelling of the stratosphere and mesosphere, in Mesospheric Models and Related Experiments. G. Fiocco, ed., Reidel Publishing Co., Dordrecht, 1971.Google Scholar
  160. Murphy, D.M., and D.W. Fahey, An estimate of the flux of stratospheric reactive nitrogen and ozone into the troposphere. J Geophys Res: 99, 5325, 1994.CrossRefGoogle Scholar
  161. Nastrom, G.D., B.B. Balsley, and D.A. Carter, Mean meridional winds in the mid and high latitude mesosphere. Geophys Res Lett: 9, 139, 1982.Google Scholar
  162. Naujokat, B., and K. Labitzke (eds.), Collection of Reports on the Stratospheric Circulation during Winters 1974–75 to 1991–92. Report 1, Sci Comm on Sol Terr Phys, University of Illinois, 1993.Google Scholar
  163. Newman, P.A., L.R. Lait, M.R. Schoeberl, M. Seablom, L. Coy, R. Rood, R. Swinbank, M. Profitt, M. Loewenstien, J.R. Podolske, J.W. Elkins, C.R. Webster, R.D. May, D.W. Fahey, G.S. Dutton and K.R. Chan, Measurement of polar vortex air in the midlatitudes. J Geophys Res: 101, 12,879, 1996.CrossRefGoogle Scholar
  164. O’Neill, A., Dynamical processes in the stratosphere: Wave motion, in Proc NATO Advanced Study Institute on Atmospheric Ozone, FAA-EE-80-20, NTIS, Springfield, Va., 1980.Google Scholar
  165. Ortland, D.A., W.R. Skinner, P.B. Hays, M.D. Burrage, R.S. Lieberman, A.R. Marshall, and D.A. Gell, Measurement of stratospheric winds by the high resolution Doppler imager. J Geophys Res: 101, 10,351, 1996.CrossRefGoogle Scholar
  166. Ortland, D.A., P.B. Hays, W.R. Skinner, and J.-H. Yee, Remote sensing of mesosphere temperature and O2 (1Σ) band volume emission rates with the higher resolution Doppler imager. J Geophys Res: 103, 1821, 1997.Google Scholar
  167. O’sullivan, D., and R.E. Young, Modeling the quasi-biennial oscillation effect on the winter stratospheric circulation. J Atmos Sci: 49, 2437, 1992.Google Scholar
  168. Palmer, T. N., Diagnostic study of a wavenumber 2 stratospheric sudden warming in a transformed Eulerian mean formalism. J Atmos Sci: 38, 544, 1981.CrossRefGoogle Scholar
  169. Pawson, S., K. Kodera, K. Hamilton, T.G. Shepherd, S.R. Beagley, B.A. Boville, J.D. Farrara, T.D.A. Fairlie, A. Kitoh, W.A. Lahoz, U. Langematz, E. Manzini, D.H. Rind, A.A. Scaife, K. Shibata, P. Simon, R. Swinbank, L. Takacs, R.J. Wilson, J.A. Al-Saadi, M. Amodei, M. Chiba, L. Coy, J. de Grandpré, R.S. Eckman, M. Fiorino, W.L. Grose, H. Koide, J.N. Koshyk, D. Li, J. Lerner, J.D. Mahlman, N.A. McFarlane, C.R. Mechoso, A. Molod, A. O’Neill, R.B. Pierce, W.J. Randel, R.B. Rood, and F. Wu, The GCM-reality intercomparison project for SPARC (GRIPS): Scientific issues and initial results. Bull Amer Meteorol Soc: 81, 781, 2000.Google Scholar
  170. Pedlosky, J., Geophysical Fluid Dynamics, Springer-Verlag, 1987.Google Scholar
  171. Perlwitz, J., and H.-F. Graf, The statistical connection between tropospheric and stratospheric circulation of the Northern hemisphere in winter. J Clim: 8, 2281, 1995.CrossRefGoogle Scholar
  172. Perlwitz, J., H.-F. Graf, and R. Voss, The leading variability mode of the coupled troposphere-stratosphere winter circulation in different climate regimes. J Geophys Res: 105, 6915, 2000.CrossRefGoogle Scholar
  173. Pitari, G.S., S. Palermi, G. Visconti, and R. Prinn, Ozone response to a CO2 doubling: Results from a stratospheric circulation model with heterogeneous chemistry. J Geophys Res: 97, 5953, 1992.Google Scholar
  174. Plumb, R.A., and A.D. McEwan, The instability of a forced standing wave in a viscous stratified fluid: A laboratory analogue of the quasi-biennial oscillation. J Atmos Sci: 35, 1827, 1978.CrossRefGoogle Scholar
  175. Plumb, R.A., Eddy fluxes of conserved quantities by small amplitude waves. J Atmos Sci: 36, 1699, 1979.Google Scholar
  176. Plumb, R.A., and M.K.W. Ko, Interrelationships between mixing ratios of long-lived stratospheric constituents. J Geophys Res: 97, 10,145, 1992.Google Scholar
  177. Plumb, R.A., A “tropical pipe” model of stratospheric transport. J Geophys Res: 101, 3957, 1996.Google Scholar
  178. Pollock, W.A., L.E. Heidt, R.A. Lueb, J.F. Vedder, M.J. Mills, and S. Solomon, On the age of stratospheric air and ozone depletion potentials in the polar regions. J Geophys Res: 97, 12,993, 1992.Google Scholar
  179. Prather, M.J., Numerical advection by conservation of second order moments. J Geophys Res: 91, 6671, 1986.Google Scholar
  180. Pyle, J. A., and C. F. Rogers, Stratospheric transport by stationary planetary waves — The importance of chemical processes. Quart J Roy Meteorol Soc: 106, 421, 1980.CrossRefGoogle Scholar
  181. Randel, W.J., Global Atmospheric Circulation Statistics, 1000–1 mb. NCAR Tech Note, TN-366+STR, 1992.Google Scholar
  182. Randel, W.J., J.C. Gille, A.E. Roche, J.B. Kumer, J.L. Mergenthaler, J.W. Waters, E.F. Fishbein, and W.A. Lahoz, Stratospheric transport from the tropics to middle latitudes by planetary-wave mixing. Nature: 365, 533, 1993.CrossRefGoogle Scholar
  183. Rasch, P.J., B.A. Boville, G.P. Brasseur, A three-dimensional general circulation model with coupled chemistry for the middle atmosphere. J Geophys Res: 100, 9041, 1995.CrossRefGoogle Scholar
  184. Reed, R.J., W.J. Campbell, L.A. Rasmusson, and D.G. Rogers, Evidence of a downward propagating annual wind reversal in the equatorial stratosphere. J Geophys Res: 66, 813, 1961.Google Scholar
  185. Reed, R.J., J.L. Wolfe, and H. Nishimoto, A spectral analysis of the energetics of the stratospheric sudden warming of early l957. J Atmos Sci: 20, 256, 1963.CrossRefGoogle Scholar
  186. Reed, R.J., The quasi-biennial oscillation of the atmosphere between 30 and 50 km over Ascension Island. J Atmos Sci: 22, 331, 1965.CrossRefGoogle Scholar
  187. Reed, R.J., and K.E. German, A contribution to the problem of stratospheric diffusion by large scale mixing. Mon Weath Rev: 93, 313, 1965.Google Scholar
  188. Richmond, A.D., Thermospheric dynamics and electrodynamics, in Solar Terrestrial Physics, R.L. Corovilano and J.M. Forbes, eds. D. Reidel, Dordrecht, 1983.Google Scholar
  189. Rind, D., R. Suozzo, N.K. Balachandran, A. Lacis, and G. Russell, The GISS global climate-middle atmosphere model, Part I: Model structure and climatology. J Atmos Sci: 45, 329, 1988.Google Scholar
  190. Rind, D., D. Shindell, P. Lonergan, and N.K. Balachandran, Climate change in the middle atmosphere, Part III. The doubled CO2 climate revisited. J Clim: 11, 876, 1998.CrossRefGoogle Scholar
  191. Robert, A., A stable numerical integration scheme for the primitive meteorological equations. Atmos Ocean: 19, 35, 1981.Google Scholar
  192. Rood, R.B., and M.R. Schoeberl, A mechanistic model of Eulerian, Lagrangian mean, and Lagrangian ozone transport by steady planetary waves. J Geophys Res: 88, 5208, 1983.Google Scholar
  193. Rood, R.B., Numerical advection algorithms and their role in atmospheric transport and chemistry models. Rev Geophys: 25, 71, 1987.Google Scholar
  194. Rose, K., and G. P. Brasseur, A three-dimensional model of chemically active trace species in the middle atmosphere during disturbed winter conditions. J Geophys Res: 94, 16,387, 1989.Google Scholar
  195. Rossby, C.-G., Planetary flow patterns in the atmosphere. Quart J Roy Meteorol Soc: 66,Suppl 68, 1940.Google Scholar
  196. Sassi, F., R.R. Garcia, and B.A. Boville, The stratopause semiannual oscillation in the NCAR Community Climate Model. J Atmos Sci: 50, 3608, 1993.CrossRefGoogle Scholar
  197. Schlesinger, M.E., and Y. Mintz, Numerical simulation of ozone production, transport and distribution with a global atmospheric general circulation model. J Atmos Sci: 36, 1325, 1979.CrossRefGoogle Scholar
  198. Schmidt, U., and A. Khedim, In situ measurements of carbon dioxide in the winter Arctic vortex and at mid-latitude: An indicator of the age of stratospheric air. Geophys Res Lett: 18, 763, 1991.Google Scholar
  199. Schoeberl, M.R., and D.F. Strobel, The zonally averaged circulation of the middle atmosphere. J Atmos Sci: 35, 577, 1978.Google Scholar
  200. Shepherd, T.G., The middle atmosphere. J Atmos Sol-Terr Phys: 62, 1587, 2000.CrossRefGoogle Scholar
  201. Shepherd, T.G., Large-scale atmospheric dynamics for atmospheric chemists. Cehm Rev: 103, 4509, 2003.Google Scholar
  202. Shepherd, G.G., G. Thuillier, W.A. Gault, B.H. Solheim, C. Hersom, J.M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L.L. Cogger, D.-L. Desaulniers, W.F.J. Evans, R.L. Gattinger, F. Girod, D. Harvie, R.H. Hum, D.J.W. Kendall, E.J. Llewellyn, R.P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W.E. Ward, R.H. Wiens, and J. Wimperis, WINDII, the wind imaging interferometer on the upper atmosphere research satellite. J Geophys Res: 98, 10,725, 1993.Google Scholar
  203. Shindell, D.T., G.A. Schmidt, M.E. Mann, D. Rind, and A. Waple, Solar forcing of regional climate change during the Maunder minimum. Science: 294, 2149, 2001.CrossRefGoogle Scholar
  204. Simmons, A.J., and R. Strüfing, Numerical forecasts of stratospheric warming events using a model with a hybrid vertical coordinate. Quart J Roy Meteorol Soc: 109, 81, 1983.CrossRefGoogle Scholar
  205. Smagorinsky, J., S. Manabe, and J.L. Holloway, Numerical results from a nine-level general circulation model of the atmosphere. Mon Weath Rev: 93, 727, 1965.Google Scholar
  206. Smith, A.K., Physics and chemistry of the mesopause region. J Atm Sol Terr Phys: 66, 839, 2004.CrossRefGoogle Scholar
  207. Smolarkiewicz, P.K., A simple positive definite advection scheme with small implicit diffusion. Mon Weath Rev: 111, 479, 1983.CrossRefGoogle Scholar
  208. Staniforth, A., and J. Coté, Semi-Lagrangian integration schemes for middle atmosphere models—A review. Mon Weath Rev: 119, 2206, 1991.CrossRefGoogle Scholar
  209. Strobel, D.F., Parameterization of linear wave chemical transport in planetary atmospheres by eddy diffusion. J Geophys Res: 86, 9806, 1981.Google Scholar
  210. Strobel, D.F., J.P. Apruzese, and M.R. Schoeberl, Energy balance constraints on gravity wave induced eddy diffusion in the mesophere and lower thermosphere. J Geophys Res: 90, 13,067, 1985.Google Scholar
  211. Strobel, D.F., Constraints on gravity wave induced diffusion in the middle atmosphere. Pure Appl Geophys: 130, 533, 1989.CrossRefGoogle Scholar
  212. Swenson, G.R., and C.S. Gardner, Special section: The 1993 airborne lidar and observations of Hawaiian airglow airborne noctilucent cloud campaigns-preface. J Geophys Res: 103, 6249, 1998.Google Scholar
  213. Swinbank, R., W.A. Lahoz, A. O’Neill, C.S. Douglas, A. Heaps, and D. Podd, Middle atmosphere variability in the UK Meteorological Office Unified Model. Quart J Roy Meteorol Soc: 124, 1485, 1998.CrossRefGoogle Scholar
  214. Thompson, D.W.J., and J.M. Wallace, The Arctic oscillation signature in the winter geopotential height and temperature fields. Geophys Res Lett: 25, 1297, 1998.Google Scholar
  215. Thompson, D.W.J., and J.M. Wallace, Annular modes in the extratropical circulation, Part I. Month-to-month variability. J Clim: 13, 1000, 2000.Google Scholar
  216. Thompson, D.W.J., J.M. Wallace, and G.C. Hegerl, Annular modes in the extratropical circulation, Part II. Trends. J Clim: 13, 1018, 2000.Google Scholar
  217. Trepte, C.R., and M.H. Hitchman, Tropical stratospheric circulation deduced from satellite aerosol data. Nature: 335, 626, 1992.Google Scholar
  218. U.S. Standard Atmosphere 1976. National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, and United States Air Force, Washington, D.C., 1976.Google Scholar
  219. Veryand, R.G., and R.A. Ebdon, Fluctuations in tropical stratospheric winds. Meteorol Mag: 90, 125, 1961.Google Scholar
  220. Vincent, D.G., Meridional circulation in the northern hemisphere lower stratosphere during 1964 and 1965. Quart J Roy Meteorol Soc: 94, 333, 1968.Google Scholar
  221. Volk, C.M., J.W. Elkins, D.W. Fahey, R.J. Salawitch, G.S. Dutton, J.M. Gilligan, M.H. Proffitt, M. Loewenstein, J.R. Podolske, K. Minschwaner, J.J. Margitan, and K.R. Chan, Quantifying transport between the tropical and mid-latitude stratosphere. Science: 272, 1763, 1996.Google Scholar
  222. von Zahn, U., J. Friedler, B. Naujokat, V. Langematz, and K. Krüger, A note on record-high temperature at the northern polar stratopause in winter 1997–98. Geophys Res Lett: 25, 4169, 1998.Google Scholar
  223. Vupputuri, R.K., The structure of the natural stratosphere and the impact of chlorofluoromethanes on the ozone layer investigated in a 2-D time dependent model. Pure Appl Geophys: 117, 448, 1979.Google Scholar
  224. Wagner, R.E., and K.P. Bowman, Wavebreaking and mixing in the Northern hemisphere summer stratosphere. J Geophys Res: 105, 24,799, 2000.CrossRefGoogle Scholar
  225. Walker, G.T., Correlations in seasaonal variations of weather. Mem Ind Meteorol Dept: 25, 275, 1924.Google Scholar
  226. Walker, G.T., and E.W. Bliss, World weather, Mem Roy Meteorol Soc: 4, 53, 1932.Google Scholar
  227. Wallace, J.M., General circulation of the tropical lower stratosphere. Rev Geophys Space Phys: 11, 191, 1973.Google Scholar
  228. Wallace, J.M., and D.W.J. Thompson, Annular modes and climate prediction. Phys Today: 28, 2002.Google Scholar
  229. Walterscheid, R.-L., G. Schubert, and J.M. Straus, A dynamical-chemical model of wave-driven fluctuations in the OH nightglow. J Geophys Res: 92, 1241, 1987.Google Scholar
  230. Waugh, D.W., and R.A. Plumb, Contour advection with surgery: A technique for investigating fine scale structure in tracer transport. J Atmos Sci: 51, 530, 1994.Google Scholar
  231. Waugh, D.W., R.A. Plumb, R.J. Atkinson, M.R. Schoeberl, L.R. Lait, P.A. Newman, M. Loewenstein, D.W. Toohey, L.M. Avallone, C.R. Webster, and R.D. May, Transport out of the lower stratospheric Arctic vortex by Rossby wave breaking. J Geophys Res: 99, 1071, 1994.CrossRefGoogle Scholar
  232. Weinstock, J., Nonlinear theory of gravity waves: Momentum deposition, generalized Rayleigh friction, and diffusion. J Atmos Sci: 39, 1698, 1982.CrossRefGoogle Scholar
  233. World Meteorological Organization (WMO), Scientific Assessment of Ozone Depletion: 1998, Global Ozone Research and Monitoring Project-Report No. 44, Geneva, 1999.Google Scholar
  234. Xu, J., The influence of photochemistry on gravity waves in the middle atmosphere. Earth Planets Space: 51, 855, 1999.Google Scholar
  235. Xun, Z., and J.R. Holton, Photochemical damping of inertio-gravity waves. J Atmos Sci: 43, 2578, 1986.Google Scholar

Copyright information

© Springer 2005

Personalised recommendations