Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yoshida, T. Synthesis of polysaccharides having specific biological activities. Prog. Polym. Sci. 2001, 26, 379–441.

    Article  CAS  Google Scholar 

  2. Yamada, H.; Kyohara, H. In: Wagner, H. (Ed.) Immunomodulatory Agents from Plants. Birkhauser Verlag, Basel, 1999, 161.

    Google Scholar 

  3. Stimple, M.; Prolsch, A.; Wagner, H. Macrophage activation and induction of macrophage cytotoxicity by purified polysaccharide fractions from the plant Echinacea purpurea. Infect. Immun. 1984, 46, 845–851.

    Google Scholar 

  4. Yamada, H. Pectic polysaccharides from Chinese herbs: structure and biological activity. Carbohydr. Polym. 1994, 25, 269–275.

    Article  CAS  Google Scholar 

  5. Chihara, G. Inhibition of mouse sarcoma 180 by polysaccharides from Lentimus edodes (berk) sing. Nature 1969, 222, 687–689.

    Article  CAS  Google Scholar 

  6. Chihara, G.; Maeda, Y. Y. Fractionation and purification of the polysaccharides with marked antitumour activity, especially lentian, from Lentimus edodes (berk) sing an edible mushroom. Cancer Res. 1970, 30, 2776–2779.

    CAS  Google Scholar 

  7. Sasaki, T. The extracellular polysaccharides of Rhizobium japonica compositional studies. Carbohydr. Res. 1976, 47, 99–101.

    Article  CAS  Google Scholar 

  8. Maeda, Y. Y.; Chihara, G. Lentinan, a new immuno-accelerator of cell-mediated responses. Nature 1971, 229, 634–638.

    Article  CAS  Google Scholar 

  9. Maeda, Y.Y.; Chihara, G. Unique increase of serum proteins and action of antitumor polysaccharides. Nature 1974, 252, 250–251.

    Article  CAS  Google Scholar 

  10. Maeda, Y. Y.; Chihara, G. Carboxymethyl pachymaran, a new water soluble polysaccharide with marked antitumor activity. Nature 1971, 233, 486–488.

    Article  Google Scholar 

  11. Maeda, Y.Y. In: Wagner, H. (Ed.) Immunomodulatory Agents from Plants. Birkhauser Verlag, Basel, 1999, 203.

    Google Scholar 

  12. Sasaki, T.; Nitta, K. Dependence on chain length of antitumor activity of (1→3)-β-D-glucan from Alcaligenes faecalis var.myxogenes, IFO 13140, and its acid degraded products. Cancer Res. 1978, 38, 379–385.

    CAS  Google Scholar 

  13. Marikawa, K.; Mizumo, D. Calcium-dependent and-independent tumoricidal activities of PMN leukocytes by a linear β-1,3-D-glucan in mice. Cancer Res. 1986, 46, 66–72.

    Article  Google Scholar 

  14. Bao, X. F.; Duan, J. Y.; Fany, J. N. Chemical modification of the (1→3)-alpha-D-glucan from spores of Ganoderma lucidum. Carbohydr. Res. 2001, 223, 127–140.

    Article  Google Scholar 

  15. Galle, K.; Wagner, H. Analytical and pharmacological studies on Mahonia aquifolium. Phytomedicine 1994, 1, 59–64.

    CAS  Google Scholar 

  16. Haensel, R. D. A plant antipsoriatic. Apoth. Ztg. 1992, 132, 2095–2101.

    CAS  Google Scholar 

  17. Bezakova, L. Lipoxygenase inhibition and antioxidant properties of bisbenzylisoquinoline alkaloids isolated from Mahonia aquifolium. Pharmazie 1996, 51, 758–762.

    CAS  Google Scholar 

  18. (a) Kardosova, A.; Alfoldi, J.; Machova, E.; Kostolova, D. Polysaccharides in the antipsoriatic Mahonia extract; structure of a (1→4)-β-D-glucan. Chem. Pap. 2001, 55, 192–195; (b) Kardosova, A. Water-extractable polysaccharide of Rudbeckia fulgida posses anti-tissue activity. Chem. Pap. 1997, 51, 52–57.

    CAS  Google Scholar 

  19. Kardosova, A. A fructofuran from the roots of Rudbeckia fulgida. Coll. Czech. Chem. Commun. 1997, 62, 1799–1803.

    Article  CAS  Google Scholar 

  20. Kardosova, A. (4-O-methyl-α-D-glucurono)-D-xylan from Rudbeckia fulgida, var. sullivantii. Carbohydr. Res. 1998, 308, 99–105.

    Article  CAS  Google Scholar 

  21. Olafsdottir, E. S. Rhamnopyranosylgalacto-furanan a new immunological active polysaccharide from Thomanolia subuniforms. Phytomedicine 1999, 6, 273–279.

    CAS  Google Scholar 

  22. Kiefel, J. M.; von Itzstein, M. Recent advances in synthesis of sialic acid derivatives and sialylmimetics as biological probes. Chem. Rev. 2002, 102, 471–490.

    Article  CAS  Google Scholar 

  23. Zygmont, D. Effect of polyanionic polymers on haemoglobin-oxygen bonding properties. Int. J. Biol. Macromol. 1987, 9, 343–345.

    Article  Google Scholar 

  24. (a) Negulescu, I.I.; Simionescu, C.I.; Capla, M.; Borsig, E. Heparinization of organic polymeric films. Memoirs Romanian Acad. Sci. Sections 1989, 12(1), 145–154. (b) Brand, C.; Vert, M.; Petitow, M. Extrasulfation of heparin: effect on chemical structures and anticoagulant activity. J. Bioact. Compat. Polym. 1989, 4, 269–284.

    Google Scholar 

  25. Uglea, C. V.; Panaitescu, L. Synthetic polyaminic macromolecules with antiviral and antitumor activity. Curr. Trends Polym. Sci. 1989, 2, 241–251.

    Google Scholar 

  26. Chien, Y. W. New developments in drug delivery systems. Med. Res. Rev. 1990, 10, 477–504.

    CAS  Google Scholar 

  27. Fulten, D. A.; Stoddart, J. F. Neoglycoconjugates based on cyclodextrins. Bioconjug. Chem. 2001, 12, 655–672.

    Article  CAS  Google Scholar 

  28. Phillips, M.; Ottenbrite, R.M. Polymers in biological systems. ACS Symp. Ser. 1988, 362, 123–139.

    Google Scholar 

  29. Ferruti, P. New polymeric and oligomeric matrices as drug carriers. CRC Crit. Rev. Ther. Drug Carrier Syst. 1986, 2, 175–241.

    CAS  Google Scholar 

  30. Uglea, C. V.; Dumitriu, C. Oligomers as “physical catalysts” of biological processes (Chapter 15). In: Dumitriu, S. (Ed.) Polymeric Biomaterials. Marcel Dekker Inc., New York, N.Y., 1994.

    Google Scholar 

  31. Uglea, C. V. Oligomers Technology and Applications. Marcel Dekker Inc., N.Y., New York, 2000.

    Google Scholar 

  32. Dimolgo, A. S. Structures-actvity correlations for antioxidant and antifungal properties of steroid glycosides. Zhur. Bioorg. Chem. 1985, 11, 408–413 (in Russian).

    Google Scholar 

  33. Kintya, P. K.; Bobeyko, W. A.; Lopatin, P. B.; Sofina, Z. P. Steroid glycosides. Glycosides of Rokogenine. S U 677410, 1978 (in Russian).

    Google Scholar 

  34. Kintya, P. K. Natural steroid bioregulators. Rast. Res. Zhur. 1988, 2, 263–272 (in Russian).

    Google Scholar 

  35. Bobeyko, W. A.; Kyntia, P. K.; Danka, I. V. Thermal decompostion of furosanol glycoside-tomatoside. J. Thermal Anal. 1990, 36, 243–253.

    Article  Google Scholar 

  36. Arshady, R. Biodegradable microcapsule drug delivery systems: manufacturing methodology, release control, and targeting prospects. J. Bioact. Compat. Polym. 1990, 5, 315–319.

    CAS  Google Scholar 

  37. Besemer, A. C.; De Nooy, A. E. J.; Van Bekkum, H. Methods for the selective oxidation of cellulose: preparation of 2,3-dicarboxycellulose and 6-carboxycellulose. ACS Symposium Series 1998, 688, 73–82.

    Article  CAS  Google Scholar 

  38. Hofreiter, B. T. Chlorous acid oxidation of periodate-oxidized starch. J. Am. Chem. Soc. 1957, 79, 6457–6462.

    CAS  Google Scholar 

  39. Hofreiter, B. T. Hydrogenolysis of dialdehyde starch to erythritol and ethylene glycol. Anal. Chem. 1957, 27, 1930–1939.

    Article  Google Scholar 

  40. Iurea, D.; Uglea, C. V.; Kyntia, P. K. Modified steroidal glycosides with potential biological activity. In: Waller, R.; Yamasachi, K. (Eds.) Saponines Used in Traditional and Modern Medicine (Adv. Exp. Med. Biol.). Plenum Press, New York, NY, 1996, 111–116.

    Google Scholar 

  41. Uglea, C. V.; Apetroaiei A.; Offenberg, H.; Negulescu, I. I. Anesthesine modified polysaccharides. Synthesis and characterization. Polym. Prep. 1992, 33, 96–97.

    CAS  Google Scholar 

  42. Uglea, C. V.; Albu, I. N. Drug delivery systems based on inorganic materials: 1. Synthesis and characterization of a zeolite-cyclophosphamide system. J. Bioact. Compat. Polym. 1994, 9, 448–461.

    CAS  Google Scholar 

  43. Uglea, C. V.; Ottenbrite, R. M. Polysaccharides as antiviral and antitumor support (Chapter 24). In: Dumitriu, S. (Ed.) Biomedical Applications of Polysaccharides. Marcel Dekker, Inc., New York, NY, 1994.

    Google Scholar 

  44. Gavat, C.; Chiruta, R.; Iacob, E.; Uglea, C. V. Anionic polymers with biological activity I. Benzocaine modified CMC. Rev. Med. Chir. 2003, 107(Suppl. 2), 56–61 (in Romanian).

    Google Scholar 

  45. Gavat, C.; Chiruta, R.; Iacob, E.; Uglea, C. V. Anionic polymers with biological activity, II. Oxidized CMC. Rev. Med. Chir. 2003, 107(Suppl. 2), 62–65 (in Romanian).

    Google Scholar 

  46. Pollack, V. A.; Fidler, I. J. Use of young mice for selection of subpopulations of cells with increased metastatic potenial from nonsygeneic neoplasms. J. Natl. Cancer Inst. 1982, 69, 137–145.

    CAS  Google Scholar 

  47. Markaverich, B. M.; Gregory, R. R.; Alejandro, M. A. Methyl p-hydroxyphenyl lactate indenification in rat liver extracts. J. High Resolut. Chromatogr. Chromatogr. Commun. 1988, 11, 605–607.

    Article  CAS  Google Scholar 

  48. Anonymous. New ribonucleotide reductase inhibitors; Didox and trinidox exhibit antiretrovirus activity in several marine animals models. AIDS Res. Hum. Retroviruses 1995, 1(Supp. 1), 11.

    Google Scholar 

  49. Simmonds, R. J. The geometry of N-hydroxy-methyl compounds. J. Chem. Soc. Perkin Trans. 1993, 13, 1399–1404.

    Google Scholar 

  50. Spridon, D.; Panaitescu, L.; Vatajanu, A.; Buruiana, E.; Uglea, C. V. The structure biological activity relation in dihydroxamic acids. Roum. Biotechnol. Lett. 1997, 2, 131–146.

    Google Scholar 

  51. Ghitler, N.; Panaitescu, L.; Uglea, C. V. The evaluation of the concentration of some antitumoral agents in organs and biological fluids by reversed phase HPLC. Studii Cercet. Stiintifice (Biology) 1996, 1, 91–94 (in Romanian).

    Google Scholar 

  52. Tepelus, V.; Panaitescu, L.; Uglea, C. V. Benzamide derivatives with cytotoxic and cytostatic activity. Studii Cercet. Stiintifice (Biology) 1996, 1, 95–98 (in Romanian).

    Google Scholar 

  53. Uglea, C. V.; Spridon, D. Biological activity of hydroxamic compounds. In: Wise, R. (Ed.) Handbook of Biomaterials. Marcel Dekker Inc., New York, NY, 2000, 1011–1021.

    Google Scholar 

  54. Matsumura, Y.; Maeda, H. Anewconcept for macromolecular therapeutics in cancer chemothearopy of turnoritropics accumaltion of proteins and the antitumour agents manics. Cancer Res. 1986, 46, 6387–6392.

    CAS  Google Scholar 

  55. Maeda, H.; Seymour, L.; Miyamoto, Y. Conjugates of anticancer agents and polymers: Advantages of macromolecular therapeutic in vivo. Bioconjug. Chem. 1992, 3, 351.

    Article  CAS  Google Scholar 

  56. Toyocumi, T.; Singhal, A. K. Synthetic carbohydrate vaccines based on tumor-associated antigens. Chem. Soc. Rev. 1995, 24(4), 231–247.

    Article  Google Scholar 

  57. Monsigni, M.; Roche, A. G.; Midoux, P.; Mayer, R. Glycoconjugates as carriers for specific delivery of therapeutic drugs and genes. Adv. Drug Deliv. Res. 1994, 14, 1–55.

    Article  Google Scholar 

  58. Wadhwa, M. B.; Rice, K. G. Receptor mediated targeting. J. Drug Targeting 1995, 3, 111–135.

    CAS  Google Scholar 

  59. Duncan, R.; Kopecek, J. Soluble synthetic polymers as potenial drug carriers. J. Adv. Polym. Sci. 1984, 57, 53–72.

    Google Scholar 

  60. Ringsdorf, H. Stucture and properties of pharmacologically active polymers. J. Polymer Sci. Symp. 1975, 68, 135–147.

    Google Scholar 

  61. Wei-Chiang S.; Jiansheng W.; Taub, M. In: Dunn, R. L.; Ottenbrite, R. M. (Eds.) Polymeric Drug Delivery System (ACS Symp. Ser.) 1991, 469, 117–127.

    Google Scholar 

  62. Uglea, C. V.; Negulescu, I. I. Synthesis and Characterization of Synthetic Oligomers. CRC Press, Boca Raton, 1991, 239–326.

    Google Scholar 

  63. Uglea, C. V.; Medvighi, C. Medical applications of synthetic oligomers (Chapter 15). In: Polymeric Biomaterials. Marcel Dekker Inc., New York, NY, 1994.

    Google Scholar 

  64. Mc Cord, R. S.; Morahan, P. S. Antiviral efffect of pyran against systemic infection of mice with herpes symplex type 2. Antimicrob. Agents Chemother. 1976, 10, 28–35.

    CAS  Google Scholar 

  65. Papas, T. S. Inhibition of RNA-dependent DNA polymerase of avian myeloblastosis virus by pyran copolymer. Proc. Natl. Acad. Sci. 1974, 71, 367–376.

    Article  CAS  Google Scholar 

  66. Breslow, D. S. Divinyl ether-maleic anhydride (pyran) copolymer used to demostrate the effect of molecular weight on biological activity. Nature 1973, 246, 160–169.

    Article  CAS  Google Scholar 

  67. Billiau, A. Mechanism of antiviral activity in vivo of polycarboxylases which induce interferon production. Nature 1971, 232, 183–191.

    CAS  Google Scholar 

  68. Hirsch, M. S. Comparison of spot-blot and microtiterplate method for the detection of HIV-1 PCR products. J. Immunol. 1992, 108, 1312–1319.

    Google Scholar 

  69. Morahan, P. S. Antitumour action of pyran copolymer and tiprone against Lewis lung carcinoma and B16 melanoma. Cancer Res. 1974, 34, 506–513.

    CAS  Google Scholar 

  70. Uglea, C. V.; Negulescu, I. I.; Siminescu, C. I.; Offenberg, H.; Grecianu, A. Benzocaine modified maleic anhydride-cyclohexyl-1,3-dioxepin copolymer: Preparation and potenial medical applications. Polymer (London) 1993, 34, 3298–3301.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Negulescu, I.I., Uglea, C.V. (2006). Biological Activity of Oxidized Polysaccharides. In: Edwards, J.V., Buschle-Diller, G., Goheen, S.C. (eds) Modified Fibers with Medical and Specialty Applications. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3794-5_8

Download citation

Publish with us

Policies and ethics