Skip to main content

Surface Modification of Cellulose Fibers with Hydrolases and Kinases

  • Chapter
Modified Fibers with Medical and Specialty Applications

10.4 Conclusions

Hydrolases and kinases based enzymatic processes, performed at mild to the cellulose fibers conditions—neutral pH and moderate temperature were efficient to restore the tensile strength of resins cross-linked cellulose fibers and to introduce new phosphate functional groups in fiber structure.

The protease hydrolysis of the amide bond in N-hydroxymethyl acryl amide cross-linked cellulose resulted in about 15% strength loss recovery coupled with up to 8% decrease of the crease-resistance effect. The lipase treatment of BTCA cross-linked cotton fabrics improved the tensile strength with up to 10%, causing just 4% deterioration of the wrinkle-resistance. Data from FT-IR spectroscopy confirmed the occurrence of protease and lipase catalyzed hydrolysis registering a decrease of the intensity of the amide and carboxyl carbonyl peaks in enzymatically treated samples. The size of the enzymes and related steric difficulties to form the enzyme-substrate intermediate complex restricted the process on fiber surface preventing further undesirable cross-links removal. In contrast, in the conventional alkaline hydrolysis the deterioration of the wrinkle-resistance of the fabrics predominates on the recovery of the strength loss.

Cotton cellulose was enzymatically phosphorylated in a new biosynthetic process using hexokinase in the presence of phosphoryl donor ATP. An innovative enzymatic analytical approach, originally developed for determination of G-6-PDH, was used to detect the occurrence of phosphate functional modification of cellulose. Phosphorylation of 0.03% of the glucopyranose units in the cellulose fibers provided a textile material with improved dyeability and flame-resistance, which additionally might be used for large number of chemical synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frick, J.; Harper, R. Textile Res. Inst. 1982, 2, 141.

    Google Scholar 

  2. Lämmermann, D. Melliand Textilberichte, 1992, 73, 274.

    Google Scholar 

  3. Frick, J.; Harper, R. Textile Res. Inst. 1982, 2, 141.

    Google Scholar 

  4. Manly, R. H. Crease resistant Treatment of Fabrics, Park Ridge, New Jersey, 1976, 104.

    Google Scholar 

  5. U.S. Patent 3,561,916, 1971, United States of America, W. F. Britinger.

    Google Scholar 

  6. U.S. Patent 4,820,307, 1989, United States of America, Department of Agriculture, invs.: C. Welch, B. Andrews.

    Google Scholar 

  7. Welch, C. Textile Res. J. 1988, 8, 480.

    Google Scholar 

  8. Meyer, U.; Mueller, K.; Zollinger, H. Textile Res. J. 1976, 46, 813.

    CAS  Google Scholar 

  9. Murphy, A. L.; Margavio, M. F.; Welch, C. M. Textile Res. J. 1971, 41, 22.

    CAS  Google Scholar 

  10. Zeronian, S. H.; Bertoniere, N. R.; Alger, K. W.; Duffin, K. W.; Kim, M. S.; Dubuque, L. K.; Collins, M. J.; Xie, C. Textile Res. J. 1989, 59, 484.

    CAS  Google Scholar 

  11. Kang, I.-S.; Yang, C. Q.; Wei, W.; Lickfield, G. Textile Res. J. 1998, 68, 865.

    CAS  Google Scholar 

  12. Kang, I.-S.; Yang, C. Q.; Wei, W.; Lickfield, G. Textile Res. J. 1998, 68, 865.

    CAS  Google Scholar 

  13. Wei, W.; Yang, C. Q.; Jiang, Y. Textile Chem. Color. 1999, 31, 34.

    CAS  Google Scholar 

  14. Wei, W.; Yang, C. Q. Textile Res. J. 1999, 69, 145.

    CAS  Google Scholar 

  15. Yang, C. Q.; Bakshi, G. Textile Res. J. 1996, 66, 377.

    CAS  Google Scholar 

  16. Yang, C. Q. Textile Res. J. 1991, 61, 298.

    CAS  Google Scholar 

  17. Yang, C. Q. Textile Res. J. 2001, 71, 201.

    CAS  Google Scholar 

  18. Yang, C. Q. Textile Res. J. 1991, 61, 433.

    CAS  Google Scholar 

  19. Yang, C. Q.; Mao, Z.; Lickfield, G. Text. Chem. Color. 2000, 32, 43.

    CAS  Google Scholar 

  20. Yang, C. Q.; Wang, X. Textile Res. J. 1996, 66, 595.

    CAS  Google Scholar 

  21. Yang, C. Q.; Wang, X.; Kang, I.-S. Textile Res. J. 1997, 67, 334.

    CAS  Google Scholar 

  22. Yang, C. Q.; Xu, L.; Li, S.; Jiang, Y. Textile Res. J. 1998, 68, 457.

    CAS  Google Scholar 

  23. Yang, C. Q.; Wang, D. Textile Res. J. 2000, 70, 615.

    CAS  Google Scholar 

  24. Cavaco-Paulo, A. Enzyme Applications For Fiber Processing, ACS Symposium Series Book, 1998, 687, 36.

    Google Scholar 

  25. Alberghina, L.; Schmid, R.D.; Verger, R. (Eds.), Lipases: Structure, Mechanism and Genetic Engineering. Weinheim, VCH, 1990.

    Google Scholar 

  26. Borgström, B.; Brockman, H. L. Lipases. Elsevier, Amsterdam, 1984.

    Google Scholar 

  27. Edwards, J. V.; Yager, D. R.; Cohen, I. K.; Diegelmann, R. F.; Montante, S.; Bertoniere, N.; Bopp, A. F. Wound Repair Regen. 2001, 1, 50.

    Article  Google Scholar 

  28. Kim, S. S.; Jeong, W. Y.; Shin, B. C.; Oh, S. Y.; Rhee, J. M. J. Biomed. Mater. Res. 1998, 40, 401.

    Article  CAS  Google Scholar 

  29. Chenault, H. K.; Simon, E. S.; Whitesides, G. M. Biotechnol. Genet. Eng. Rev. 1988, 6, 221.

    CAS  Google Scholar 

  30. Whitesides, G. M.; Wong, C. H. Aldrichimica Acta, 1983, 16, 27.

    CAS  Google Scholar 

  31. Whitesides, G. M.; Wong, C. H.; Pollak, A. ACS Symp. Ser. 1982, 185, 205.

    Article  CAS  Google Scholar 

  32. Crans, C.; Kazlauskas, R. J.; Hirschbein, B. L.; Wong, C. H.; Abril, O.; Whitesides, G. M. In: Mosbach, K. (Ed.) Methods Enzymol. Academic Press Inc., New York, 1987, 136, 263.

    Google Scholar 

  33. Viola, R. E.; Raushel, F. M.; Rendina, A. L.; Cleland, W. W. Biochemistry, 1982, 21, 1295.

    Article  CAS  Google Scholar 

  34. Alcalase® manual instruction”, Enzyme Business, B259f-GB Nov. 1998 © Novo Nordisk A/S.

    Google Scholar 

  35. Silverstein, R. M.; Bassler, G. C.; Morril, T. C. Spectrometric Identification of Organic Compounds, 5th edn. John Wiley & Sons Inc., Toronto, 1991, 102–130.

    Google Scholar 

  36. Petersen, M.; Fojan, P.; Petersen, S. J. Biotechnol. 2001, 85, 115.

    Article  Google Scholar 

  37. Giles, C. H. A Laboratory Course in Dyeing, The Society of Dyers and Colourists, Bragford, Yorkshire, England, 1974, 65.

    Google Scholar 

  38. Norme française NF G 07-184, Textiles-Comportement au feu, Méthode de classement en fonction de la surface br”ûlée, 1985.

    Google Scholar 

  39. Renfrew, A. H. M.; Taylor J. A. Rev. Prog. Coloration, 1990, 20, 1–9.

    CAS  Google Scholar 

  40. O Nkeonye, P. JSDC, 1986, 102, 384–391.

    CAS  Google Scholar 

  41. Amato, M. E.; Fisichella, S.; Rattee, I. D. JSDC, 1987, 103, 434–437.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Tzanov, T., Cavaco-Paulo, A. (2006). Surface Modification of Cellulose Fibers with Hydrolases and Kinases. In: Edwards, J.V., Buschle-Diller, G., Goheen, S.C. (eds) Modified Fibers with Medical and Specialty Applications. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3794-5_10

Download citation

Publish with us

Policies and ethics