Skip to main content

Design and Operation of a Radial Flow Bioreactor for Reconstruction of Cultured Tissues

  • Chapter

Summary

Cell culture is the most important operation to produce tissues endowed with desired functions and constructions. The approaches to induce the functions of tissues have been done by many researchers using various types of stimuli such as physical and chemical factors existing in solid, aqueous and gaseous phases. The bioreactors can prepare accommodative culture conditions, realizing that the well-ordered assemble of the cells allows the success of tissue reconstruction in vitro. We exemplified the circulating medium flow bioreactor as the typical regulating system of culture under enforced oxygen supply and mechanical stress. In addition, the radial flow bioreactor was superior to oxygen supply in high cell density culture under low shear stress, resulting from high level of cross-sectional area of medium flow. The precise design of bioreactor based on assessments of shear stress and oxygen supply facilitate the production of well designed tissues in vitro.

Keywords

  • Dissolve Oxygen
  • Tissue Engineering
  • Radial Flow
  • Bioreactor System
  • Bioartificial Liver

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/1-4020-3741-4_5
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-3741-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bohmann A, Pötner R, Mäkl H. 1995. Performance of a membrane-dialysis bioreactor with a radial-flow fixed bed for the cultivation of a hybridoma cell line. Appl Microbiol Biotechnol 43:772–780.

    CrossRef  PubMed  CAS  Google Scholar 

  • Bohmann A, Pötner R, Schmieding J, Kasche V, Mäkl H. 1992. The membrane dialysis bioreactor with integrated radial-flow fixed bed—a new approach for continuous cultivation of animal cells. Cytotechnol 9: 51–57.

    CAS  Google Scholar 

  • Davisson T, Sah RL, Ratcliffe A. 2002. Perfusion increases cell content and matrix synthesis in chondrocyte three dimensional cultures. Tissue Eng 8:807–816.

    CrossRef  PubMed  CAS  Google Scholar 

  • Dellian M, Helmlinger G, Yuan F, Jain RK. 1996. Fluorescence ratio imaging of interstitial pH in solid tumours: effect of glucose on spatial and temporal gradients British J Cancer 74: 1206–1215.

    CAS  Google Scholar 

  • Freed LE, Vunjak-Novakovic G, Langer R. 1993. Cultivation of cell-polymer cartilage implants in bioreactors. J Cell Biochem 51:257–264.

    CrossRef  PubMed  CAS  Google Scholar 

  • Freed LE, Langer R, Martin I, Pellis NR, Vunjak-Novakovic G. 1997. Tissue engineering of cartilage in space. Proc Nat Acad Sci 94:13885–13890.

    CrossRef  PubMed  CAS  Google Scholar 

  • Freed LE, Hollander AP, Martin I, Barry JR, Langer R, Vunjak-Novakovic G. 1998. Chondrogenesis in a cell-polymer-bioreactor system. Exp Cell Res 240:58–65.

    CrossRef  PubMed  CAS  Google Scholar 

  • Gloeckner H, Lemke H-D. 2001. New miniaturized hollow-fiber bioreactor for in vivo like cell culture, cell expansion, and production of cell-derived products. Biotechnol Prog 17:828–831.

    CrossRef  PubMed  CAS  Google Scholar 

  • Helmlinger G, Yuan F, Dellian M, Jain RK. 1997. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature Medicine 3:177–182.

    CrossRef  PubMed  CAS  Google Scholar 

  • Hirai H, Umegaki R, Kino-oka M, Taya M. 2002. Characterization of cellular motions through direct observation of individual cells at early stage in anchorage-dependent culture. J Biosci Bioeng 94:351–356.

    CrossRef  PubMed  CAS  Google Scholar 

  • Hongo T. 2003. Three-dimensional, high density cell culture in radial-flow bioreactor. The Cell 35:472–473 (in Japanese).

    Google Scholar 

  • Kawada M, Nagamori S, Aizaki H, Fukuya K, Niiya M, Matsuura T, Sujino H, Hasumura AS, Yashida H, Mizutani S, Ikenaga H. 1998. Massive culture of human liver cancer cells in a newly developed radial flow bioreactor system: ultrafine structure of functionally enhanced hepatocarcinoma cell lines. In Vitro Cell Dev Biol-Animal 34:109–115.

    CAS  Google Scholar 

  • Kino-oka M, Prenosil JE. 2000. Development of on-line monitoring system of human keratinocyte growth by image analysis and its application to bioreactor culture. Biotechnol Bioeng 67:234–239.

    CrossRef  PubMed  CAS  Google Scholar 

  • Kino-oka M, Umegaki R, Taya M, Tone S, Prenosil JE. 2000. Valuation of growth parameters in monolayer keratinocyte culture based on a two-dimensional cell placement model. J Biosci Bioeng, 89:285–287.

    CrossRef  PubMed  CAS  Google Scholar 

  • Kino-oka M, Hara Y, Yashiki S, Taya M, Yamamoto T. 2002. Model development for spatial growth in culture of chondrocyte cells embedded in collagen gels. Tissue Engineering 5th International Meeting of the Tissue Engineering Society international 8:1172.

    Google Scholar 

  • Lalan S, Pomerantseva I, Vacanti JP. 2001. Tissue engineering and its potential impact on surgery. World J Surg 25:1458–1466.

    CrossRef  PubMed  CAS  Google Scholar 

  • Lanza RP, Langer R, Vacanti J. 2000. Principles of Tissue Engineering. San Diego: Academic Press.

    Google Scholar 

  • Ledezma GA, Folch A, Bhatia SN, Balis UJ, Yarmush ML, Toner M. 1999. Numerical model of fluid flow and oxygen transport in a radial-flow microchannel containing hepatocytes. J Biomechanical Eng 121:58–64.

    CAS  CrossRef  Google Scholar 

  • Lodie TA, Blickarz CE, Devarakonda TJ, He C, Dash AB, Clarke J, Geleneck K, Shihabuddin L, Tubo R. 2002. Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction. Tissue Eng 8:739–751.

    CrossRef  PubMed  CAS  Google Scholar 

  • Lysaght MJ, Reyes J. 2001. The growth of tissue engineering. Tissue Eng 7:485–491.

    CrossRef  PubMed  CAS  Google Scholar 

  • McIntire LV. 2003. WTEC panel report on tissue engineering. Tissue Eng 9:3–7.

    CrossRef  PubMed  Google Scholar 

  • Mayhew TA, Williams GR, Sebuca MA, Kuniholm G, du Moulin GC. 1998. Validation of a quality assurance program for autologous cultured chondrocyte implantation. Tissue Eng 4:325–334.

    PubMed  CAS  Google Scholar 

  • Miura T, Shiota K. 2000. Extracellular matrix environment influences chndrogenic pattern formation in limb bud micromass culture: experimental verification of theoretical models. Anat Rec 258:100–107.

    CrossRef  PubMed  CAS  Google Scholar 

  • Mizuno S, Ushida T, Tateishi T, Glowacki J. 1998. Effect of physical stimulation on chondrogenesis in vitro. Mater Sci Eng C 6:301–306.

    CrossRef  Google Scholar 

  • Mizuno S, Tateishi T, Ushida T, Glowacki J. 2002. Hydrostatic fluid pressure enhances matrix synthesis and accumulation by bovin chondrocytes in three-dimensional culture. J Cell Physiol 193:319–327.

    CrossRef  PubMed  CAS  Google Scholar 

  • Morsiani E, Galavotti D, Puviani AC, Valieri L, Brogli M, Tosatti S, Pazzi P, Azzena G. 2000. Radial flow bioreactor outperforms hollow-fiber modules as a perfusing culture system for primary porcine hepatocytes. Transplantation Proc 32:2715–2718.

    CrossRef  CAS  Google Scholar 

  • Morsiani E, Brogli M, Galavotti D, Bellini T, Ricci D, Pazzi P, Puviani AC. 2001. Long-term expression of highly differentiated functions by isolated porcine hepatocytes perfused in a radial-flow bioreactor. Artificial Organs 25:740–748.

    CrossRef  PubMed  CAS  Google Scholar 

  • Morsiani E, Pazzi P, Puviani AC, Brogli M, Valieri L, Gorini P; Scoletta P, Marangoni E, Ragazzi R, Azzena G. 2002. Early experiences with a porcine hepatocyte-based bioartificial liver in acute hepatic failure patients. Inter J Artificial Organs 25:192–202.

    CAS  Google Scholar 

  • du Moulin GC, Morohashi M. 2000. Development of a regulatory strategy for the cellular therapies: an American perspective. Mater Sci Eng C 13:15–17.

    CrossRef  Google Scholar 

  • Murata T, Ushida T, Mizuno S, Tateishi T. 1998. Proteoglycan synthesis by chondrocytes cultured under hydrostatic pressure and perfusion. Mater Sci Eng C 6:297–300.

    CrossRef  Google Scholar 

  • Nagamori S, Hasumura S, Matsuura T, Aizaki H, Kawada M. 2000. Developments in bioartificial liver research: concept, performance, and applications. J Gasteroentoerol 35:493–503.

    CrossRef  CAS  Google Scholar 

  • Naughton GK. 2002. Critical issues in tissue engineering. Ann NY Acad Sci 961:372–385.

    PubMed  CAS  CrossRef  Google Scholar 

  • Neves A A, Medcalf N, Brindle K. 2003. Functional assessment of tissue engineered meniscal cartilage by magnetic resonance imaging and spectroscopy. Tissue Eng 9:51–62.

    CrossRef  PubMed  CAS  Google Scholar 

  • Pazzano D, Mercier KA, Moran JM, Fong SS, DiBiasio DD, Rulfs JX, Kohles SS, Bonassar LJ. 2000. Comparison of chondrogenesis in static and perfused bioreactor culture. Biotechnol Prog 16:893–896.

    CrossRef  PubMed  CAS  Google Scholar 

  • Ratcliffe A, Niklason LE. 2002. Bioreactors and bioprocessing for tissue engineering. Ann NY Acad Sci 961:210–215.

    PubMed  CAS  Google Scholar 

  • Sodian R, Lemke T, Fritsche C, Hoerstrup SP, Fu P, Potapov EV, Hausmann H, Hetzer R. 2002. Tissue-engineering bioreactors: a new combined cell-seeding and perfusion system for vascular tissue engineering. Tissue Eng 8:863–870.

    CrossRef  PubMed  CAS  Google Scholar 

  • Sodian R, Lemke T, Loebe M, Hoerstrup SP, Potapov EV, Hausmann H, Meyer R, Hetzer R. 2001 New pulsatile bioreactor for fabrication of tissue-engineered patches. J Biomed Mater Res Appli Biomater 58:402–405.

    Google Scholar 

  • Sun W, Lal P. 2002. Recent development on computer aided tissue engineering — a review. Computer Methods and Programs in Biomedicine 67:85–103.

    CrossRef  PubMed  Google Scholar 

  • Umegaki R, Murai K, Kino-oka M, Taya M. 2002. Correlation of cellular life span with growth parameters observed in successive cultures of human keratinocytes. J Biosci Bioeng 94:231–236.

    CrossRef  PubMed  CAS  Google Scholar 

  • Vunjak-Novakovic G, Obradovic B, Martin I, Freed LE. 2002. Bioreactor studies of native and tissue engineered cartilage. Biorheology 39:259–268.

    PubMed  CAS  Google Scholar 

  • Yashiki S, Umegaki R, Kino-oka M, Taya M. 2001. Evaluation of attachment and growth of anchorage-dependent cells on culture surfaces with type I collagen coating. J Biosci Bioeng 92:385–388.

    CrossRef  PubMed  CAS  Google Scholar 

  • Yoshida H, Mizutani S Ikenaga H. 1993. Production of monoclonal antibodies with a radial-flow bioreactor. In: Kaminogawa S, Ametani A; Hachimura, S (Editors). Animal Cell Technology: Basic & Applied Aspects, volume 5. Dordrecht: Kluwer Academic Publishers. pp 347–353.

    Google Scholar 

  • Yoshida H, Mizutani S, Ikenaga H. 1997. Scale-up of interleukin-6 production by BHK cells using a radial-flow reactor packed with porous glass beads. J Ferment Bioeng 84:279–281.

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Kino-Oka, M., Taya, M. (2005). Design and Operation of a Radial Flow Bioreactor for Reconstruction of Cultured Tissues. In: Chaudhuri, J., Al-Rubeai, M. (eds) Bioreactors for Tissue Engineering. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3741-4_5

Download citation