Skip to main content

Taylor-Vortex Bioreactors for Enhanced Mass Transport

  • Chapter

Keywords

  • Couette Flow
  • Sherwood Number
  • Vortex Flow
  • Outer Cylinder
  • Taylor Number

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/1-4020-3741-4_3
  • Chapter length: 39 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-3741-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Reesh I, Kargi F. 1989. Biological responses of hybridoma cells to defined hydrodynamic shear stress. J Biotechnol 9:167–178.

    CrossRef  CAS  Google Scholar 

  • Andereck CD, Liu SS, Swinney HL. 1986. Flow regimes in a circular couette system with independently rotating cylinders. J Fluid Mech 164:155–183.

    CrossRef  Google Scholar 

  • Bailey JE, Ollis DF. 1986. Biochemical Engineering Fundamentals. 2nd Edition. McGraw-Hill Inc. New York.

    Google Scholar 

  • Begley CM, Kleis SJ. 2000. The fluid dynamic and shear environment in the NASA/JSC rotating-wall-perfused vessel bioreactor. Biotech Bioeng 70:32–40.

    CrossRef  CAS  Google Scholar 

  • Blennerhassett PJ, Hall P. 1979. Centrifugal instabilities of circumferential flows in finite cylinders: linear theory. Proc Roy Soc London A 365:191–207.

    Google Scholar 

  • Born C, Zhang Z, Al-Rubeai M, Thomas CR. 1992. Estimation of disruption of animal cells by laminar shear stress.. Biotech Bioeng 40:1004–1010.

    CrossRef  CAS  Google Scholar 

  • Brown TD. 2000. Techniques for mechanical stimulation of cells in vitro: A Review. J Biomech 33:3–14

    CrossRef  PubMed  CAS  Google Scholar 

  • Burkhalter JE, Koschmeider EL. 1974. Steady supercritical taylor vorticesafter sudden starts. Phys Fluids 17:1929–1935.

    CrossRef  Google Scholar 

  • Butler M. 1988. A comparative review of microcarriers available for the growth of anchorage-dependent animal cells. Animal Cell Biotechnology 3:283–303.

    Google Scholar 

  • Campero RJ, Vigil RD. 1997. Axial dispersion during low-reynolds number taylor-couette flow: intravortex mixing effects. Chem Eng Sci 52:3303–3310.

    CrossRef  CAS  Google Scholar 

  • Chandrasekhar S. 1961. Hydrodynamic and Hydromagnetic Instability. Clarendon Press, Oxford.

    Google Scholar 

  • Chen SY, Huang SY. 2000. Shear stress effects on cell growth and l-dopa production by suspension culture of Stizolobium hassjoo cells in an agitated bioreactor. Bioproc Eng 22:5–12.

    CrossRef  Google Scholar 

  • Cherry RS, Papoutsakis ET. 1986. Hydrodynamic effects on cells in agitated tissue culture reactors. Bioproc Eng 1:29–41.

    CrossRef  Google Scholar 

  • Cherry RS,, Papoutsakis ET. 1988. Physical mechanisms of cell damage in microcarrier cell culture bioreactors. Biotech Bioeng 32:1001–1014.

    CrossRef  CAS  Google Scholar 

  • Cole JA. 1976. Taylor-vortex instability and annulus length effects. J Fluid Mech 75:1–15.

    CrossRef  Google Scholar 

  • Coles D. 1965. Transition in circular couette flow. J Fluid Mech 21:385–425

    CrossRef  Google Scholar 

  • Coulson JM, Richardson JF, Backhurst JR, Harker JH. 1991. Chemical Engineering Vol 1. 4th Edition, Pergamon Press, Oxford.

    Google Scholar 

  • Croughan MS, Hamel JF, Wang DIC. 1987. Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotech Bioeng 29:130–141.

    CrossRef  CAS  Google Scholar 

  • Croughan MS, Sayre ES, Wang DIC. 1989. Viscous reduction of turbulent damage in animal cell culture. Biotech. Bioeng. 33:862–872.

    CrossRef  CAS  Google Scholar 

  • Curran SJ, Black RA. 2000. Mass transport and hydrodynamic modelling for an annular flow bioreactor. ASME BED Advances in Bioengineering 51.

    Google Scholar 

  • Curran SJ. 2002. Hydrodynamics and Mass Transport in an Annular Flow Bioreactor. PhD Thesis University of Liverpool, UK.

    Google Scholar 

  • Debler W, Fuhner E, Schaaf B. 1969. Torque and flow patterns in supercritical taylor-vortex flow. In 12th Int. Congr. Appl. Mech. Springer, Berlin, 158–178.

    Google Scholar 

  • Desmet G, Verelst H, Baron GV. 1996. Local and global dispersion effects in Couette-Taylor flow [I]: Decription and modelling of the dispersion effects. Chem. Eng. Sci. 51:1287–1298.

    CrossRef  CAS  Google Scholar 

  • Desmet G, Verelst H, Baron GV. 1996. Local and global dispersion effects in Couette-Taylor flow [II]: Quantitative measurements and discussion of the reactor performance. Chem Eng Sci 51:1299–1309.

    CrossRef  CAS  Google Scholar 

  • Dewey CF, Bussolari SR, Gimbrone MA, Davies PF. 1981. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103:177–185.

    PubMed  CrossRef  Google Scholar 

  • Dong C, Lei XX. 2000. Biomechanics of cell rolling: shear flow, cell surface adhesion and cell deformability. J Biomech 33:35–43.

    CrossRef  PubMed  CAS  Google Scholar 

  • Drazin PG, Reid WH. 1981. Hydrodynamic Stability. Cambridge University Press.

    Google Scholar 

  • Edwards WS, Beane SR, Varma S. 1991. Onset of wavy-vortices in the finite length Taylor-Couette problem. Phys Fluids A 3:1510–1518.

    CrossRef  Google Scholar 

  • Enfors SO, Jahic M, Rozkov A, Xu B, Hecker M, Jurgen B, Kruger E, Schweder T, Hamer G, O’Beirne D, Noisommit-Rizzi N, Reuss M, Boone L, Hewitt C, McFarlane C, Nienow A, Kovacs T, Tragardh C, Fuchs L, Revstedt J, Friberg PC, Hjertager B, Blomsten G, Skogman H, Hjort S, Hoeks F, Lin HY, Neubauer P, van der Lans R, Luyben K, Vrabel P, Manelius A. 2001. Physiological responses to mixing in large scale bioreactors. J Biotechnol 85:175–185

    CrossRef  PubMed  CAS  Google Scholar 

  • Frangos JA, McIntire LV, Eskin SG. 1988. Shear stress induced stimulation of mammalian cell metabolism. Biotech Bioeng 32:1053–1061.

    CrossRef  CAS  Google Scholar 

  • Freed LE, Hollander AP, Martin I, Barry JR, Langer R, Vunjak-Novakovic G. 1998. Chondrogenesis in a cell-polymer-bioreactor system. Exp Cell Res 240:58–65.

    CrossRef  PubMed  CAS  Google Scholar 

  • Fry DL. 1968. Acute vascular endothelial changes associated with increased blood velocity. Circ Res 22: 165–197.

    PubMed  CAS  Google Scholar 

  • Goodwin T, Jessup J, Wolf D. 1992. Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating wall vessels. In Vitro Cell Dev Biol 28A: 47–60.

    CAS  Google Scholar 

  • Hall P. 1980. Centrifugal instabilities of circumferential flows in finite cylinders: non-linear theory. Proc Roy Soc London A 372:317–356.

    Google Scholar 

  • Hammond TG, Hammond JM. 2001. Optimised suspension culture: the rotating wall vessel. Am J Physiol Renal Physiol 281:F12–F25.

    PubMed  CAS  Google Scholar 

  • Haut B, Ben Amor H, Coulon L, Jacquet A, Halloin V. 2003. Hydrodynamics and mass transfer in a Couette-Taylor bioreactor for the culture of animal cells. Chem Eng Sci 58:777–784.

    CrossRef  CAS  Google Scholar 

  • Howes T, Rudman M. 1998. Flow and axial dispersion simulation for traveling axisymmetric Taylor vortices. AIChE J 44:255–262.

    CrossRef  CAS  Google Scholar 

  • Hu WS, Peshwa MV. 1991. Animal cell bioreactors: recent advances and challenges to scale-up. Can J Chem Eng 69:409–420.

    CAS  CrossRef  Google Scholar 

  • Hua J, Erickson LE, Yiin TY, Glasgow LA. 1993. A review of the effects of shear and interfacial phenomena on cell viability. Critical Rev Biotech 13:305–328.

    CAS  Google Scholar 

  • Inamura T, Saito K, Ishikura S. 1993. A new approach to continuous emulsion polymerization. Polym Int 30:203–206.

    Google Scholar 

  • Kallos MS, Behie LA. 1999. Inoculation and growth conditions for high density expansion of mammalian neural stem cells in suspension bioreactors. Biotechnol Bioeng 63:473–483.

    CrossRef  PubMed  CAS  Google Scholar 

  • Kataoka K, Doi H, Hongo, T, Futagawa M. 1975. Ideal plug flow properties of Taylor vortex flow. J Chem Eng Jap 8:472–476.

    Google Scholar 

  • Kataoka K, Doi H, Komai T. 1977. Heat and mass transfer in Taylor vortex flow with constant axial flowrates. Int J Heat Mass Transfer 20:57–63.

    CrossRef  Google Scholar 

  • Kataoka K, Takigawa T. 1981. Intermixing over cell boundary between Taylor vortices. AIChE J 27: 504–508.

    CrossRef  CAS  Google Scholar 

  • Koschmeider EL. 1979. Turbulent Taylor-vortex flow. J Fluid Mech 93:515–527.

    CrossRef  Google Scholar 

  • Lakhotia S, Papoutsakis ET. 1992. Agitation induced cell injury in microcarrier cultures. Protective effect of viscosity is agitation intensity dependent: experiments and modelling. Biotech Bioeng 39:95–107.

    CrossRef  CAS  Google Scholar 

  • Langer R, Vacanti J. 1993. Tissue engineering. Science 260:920–926.

    PubMed  CAS  Google Scholar 

  • Lee SHK, Sengupta S, Wei T. 1995. Effect of polymer additives on Gortler vortices in Taylor-Couette Flow. J Fluid Mech 282:115–129.

    CrossRef  CAS  Google Scholar 

  • Legrand J, Coeuret F. 1986. Circumferential mixing in one-phase and two-phase Taylor vortex flows. Chem Eng Sci 41:47–53.

    CrossRef  CAS  Google Scholar 

  • Leib TM, Pereira CJ, Villadsen J. 2001. Bioreactors: a chemical engineering perspective. Chem Eng Sci 56:5485–5497.

    CrossRef  CAS  Google Scholar 

  • Levenspiel O. 1972. Chemical Reaction Engineering. 2nd Edition, Wiley Publications, New York, pp 253–314.

    Google Scholar 

  • Levesque MJ, Nerem RM. 1985. The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng 107:341–347.

    PubMed  CAS  CrossRef  Google Scholar 

  • Lewis JW. 1928. Observed structures in rotating cylinder flows. Proc Roy Soc A London 117:388–406.

    Google Scholar 

  • Lewis R. 1995. Tissue engineering now coming into its own as a scientific field. The Scientist 9: 12–15.

    Google Scholar 

  • Liu CI, Lee DJ. 1999. Micromixing effects in a Couette flow reactor. Chem Eng Sci 54:2883–2888.

    CrossRef  CAS  Google Scholar 

  • Lorenzen A, Pfister G, Mullin T. 1983. End-effects on the transition to time-dependent motion in the Taylor experiment. Phys Fluids 26:10–13.

    CrossRef  Google Scholar 

  • Ludwig A, Kretzmer G, Schugerl K. 1992. Determination of a “critical shear stress level” applied to adherent mammalian cells. Enz Microb Technol 14:209–213.

    CrossRef  CAS  Google Scholar 

  • Mardikhar SH, Niranjan K. 2000. Observations on the shear damage to different animal cells in a concentric cylinder viscometer. Biotechnol. Bioeng. 68:697–704.

    CrossRef  Google Scholar 

  • McQueen A, Meilhoc E, Bailey J. 1987. Flow effects on the viability and lysis of suspended animal cells. Biotechnol Lett 9:831–839.

    CrossRef  CAS  Google Scholar 

  • Michaels JD, Kunas KT, Papoutsakis ET. 1992. Fluid mechanical damage of freely suspended animal cells in agitated bioreactors: effects of dextran, derivatized celluloses and polyvinyl alcohol. Chem Eng Commun 118: 341–360.

    CAS  Google Scholar 

  • Mobbs FR, Ozogan MS. 1984. Study of sub-critical Taylor-vortex flow between eccentric rotating cylinders by torque measurements and visual observations. Int J Heat & Fluid Flow 5:251–253.

    CrossRef  Google Scholar 

  • Mullin T. 1982. Mutations of steady cellular flows in the Taylor experiment. J Fluid Mech 121: 207–218.

    CrossRef  Google Scholar 

  • Naughton G. 1998. Tissue engineering-new challenges. ASAIO J 115–116.

    Google Scholar 

  • Nollert MU, Diamond SL, McIntire LV. 1991. Hydrodynamic shear stress and mass transport modulation of endothelial cell metabolism. Biotech Bioeng 38: 588–602.

    CrossRef  CAS  Google Scholar 

  • Obradovic B, Carrier RL, Vunjak-Novakovic G, Freed LE. 1999. Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotech Bioeng 63:197–205.

    CrossRef  CAS  Google Scholar 

  • Ogihara T, Matsuda G, Yanagawa T, Ogata N, Fujita K, Nomura M. 1995. Continuous synthesis of monodispersed silica particles using Couette-Taylor vortex flow. J Soc Ceram Jpn Int Ed 103:151–154.

    CAS  Google Scholar 

  • Ohmura N, Kataoka K, Shibata Y, Makino T. 1997. Effective mass diffusion over cell boundaries in a Taylor-Couette flow system. Chem Eng Sci 52:1757–1765.

    CrossRef  CAS  Google Scholar 

  • Papadaki M, McIntire LV, Eskin SG. 1996. Effects of shear stress on the growth of aortic smooth muscle cells in vitro. Biotech Bioeng 50:555–561.

    CrossRef  CAS  Google Scholar 

  • Papoutsakis ET. 1991. Fluid-mechanical damage of animal cells in bioreactors. Trends in Biotech 9: 427–437.

    CrossRef  CAS  Google Scholar 

  • Park K, Donnelly RJ. 1981. Study of the transition to Taylor-vortex flow. Phys Rev A 24:2277–2279.

    CrossRef  CAS  Google Scholar 

  • Petersen JF, McIntire LV, Papoutsakis ET. 1988. Shear sensitivity of cultured hybridoma cells CRL-8018 depends on mode of growth, culture age and metabolite concentration. J Biotechnol 7:229–246.

    CrossRef  CAS  Google Scholar 

  • Rhodes NP, Shortland AP, Rattray A, Black RA, Williams DF. 1997. Activation status of platelet aggregates and platelet microparticles shed in sheared blood. J Mat Sci Mat Med 8:747–751.

    CrossRef  CAS  Google Scholar 

  • Roberts PH. 1965. The solution of the characteristic value problems. Proc Roy Soc London A 283: 550–556.

    Google Scholar 

  • Rudman M, Thompson MC, Hourigan K. 1994. Particle shear rate history in a Taylor-Couette column. ASME Fluids Eng Div FED 189:23–30.

    Google Scholar 

  • Rudolph M, Shinbrot T, Lueptow RM. 1998. A model of mixing and transport in wavy Taylor-Couette flow. Physica D 121:163–174.

    CrossRef  CAS  Google Scholar 

  • Ryrie S. 1992. Mixing by chaotic advection in a class of spatially periodic flows. J Fluid Mech 236: 1–19.

    CrossRef  CAS  Google Scholar 

  • Sato M, Nagayama K, Kataoka N, Sasaki M, Hane K. 2000. Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress. J Biomech 33:127–135.

    CrossRef  PubMed  CAS  Google Scholar 

  • Savas O. 1985. On flow visualization using reflective flakes. J Fluid Mech 152:235–248.

    CrossRef  Google Scholar 

  • Schugerl K, Kretzmer G (editors). 2000. Influence Of Stress On Cell Growth And Product Formation. Adv Biochem Eng Biotechnol vol 67. Springer.

    Google Scholar 

  • Schlichting H. 1987. Boundary Layer Theory. New York: McGraw-Hill Inc. 7th Edition.

    Google Scholar 

  • Schnittler HJ, Franke RP, Akbay U, Mrowietz C, Drenckhahn D. 1993. Improved in vitro rheological system for studying the effect of fluid shear stress on cultured cells. Am J Physiol 265:C289–C298.

    PubMed  CAS  Google Scholar 

  • Schultz-Grunow F, Hein H. 1956. Beitrag zur Couettestromung. Z Flugwiss 4:28–30.

    Google Scholar 

  • Sherman HS. 1991. Viscous Flow. New York: McGraw-Hill Inc.

    Google Scholar 

  • Snyder HA. 1969. Wave-number selection at finite amplitude in rotating Couette flow. J Fluid Mech 26: 545–562.

    CrossRef  Google Scholar 

  • Spier RE. 1995. Gradients in animal and plant cell technology systems. Enz Microb Technol 17:91–92.

    CrossRef  CAS  Google Scholar 

  • Stathopoulos NA, Hellums JD. 1985. Shear stress effects on human embryonic kidney cells in vitro. Biotech Bioeng 28:1021–1026.

    CrossRef  Google Scholar 

  • Sugata S, Yoden S. 1991. Effects of centrifugal force on stability of axisymmetric viscous flow in a rotating annulus. J Fluid Mech 229:471–482.

    CrossRef  Google Scholar 

  • Takhar HS, Ali MA, Soundalgekar VM. 1992. The effect of radial temperature gradient and axial magnetic field on the stability of Couette flow: the narrow gap problem. Int J Energy Res 16:597–621.

    CAS  Google Scholar 

  • Tam WY, Swinney HL. 1987. Mass transport in turbulent Couette-Taylor flow. Phys Rev A 36:1374–1381.

    CrossRef  PubMed  Google Scholar 

  • Taylor GI. 1923. Stability of a viscous liquid contained between two rotating cylinders. Phil Trans Roy Soc London A 157:565–578.

    Google Scholar 

  • Temenoff JS, Mikos AG. 2000. Tissue engineering for regeneration of articular cartilage. Biomaterials 21:431–440.

    CrossRef  PubMed  CAS  Google Scholar 

  • Thomas CR. 1990. Problems of shear in biotechnology. In: Chemical Engineering Problems in Biotechnology. London: Elsevier.

    Google Scholar 

  • Thoumine O, Ziegler T, Girard PR, Nerem RM. 1995. Elongation of confluent endothelial cells in culture: the importance of fields of force in the associated alterations of their cytoskeletal structures. Exp Cell Res 29: 427–441.

    CrossRef  Google Scholar 

  • Tramper J. 1995. Oxygen gradients in animal cell bioreactors. Cytotechnology 18:27–34.

    CrossRef  CAS  Google Scholar 

  • Unsworth BR, Lelkes PI. 1998. Growing tissues in microgravity. Nature Medicine 4:901–907.

    CrossRef  PubMed  CAS  Google Scholar 

  • Vastano JA, Russo T, Swinney HL. 1990. Bifurcation to spatially induced chaos in a reaction-diffusion system. Physica D 46:23–42.

    CrossRef  CAS  Google Scholar 

  • Vunjak-Novakovic G, Freed LE, Biron RJ, Langer R. 1996. Effects of mixing on the composition and morphology of tissue engineered cartilage. AIChE J 42:850–860.

    CrossRef  CAS  Google Scholar 

  • Vunjak-Novakovic G, Obradovic B, Martin I, Bursac PM, Langer R, Freed LE. 1998. Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol Prog 14:193–202.

    CrossRef  PubMed  CAS  Google Scholar 

  • Vunjak-Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, Freed LE. 1999. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue engineered cartilage. J Orthop Res 17:130–138.

    CrossRef  PubMed  CAS  Google Scholar 

  • White, FM. 1991. Viscous Fluid Flow. New York: McGraw Hill Inc.

    Google Scholar 

  • Williams KA, Saini S, Wick TM. 2002. Computational dynamics modelling of steady state momentum and mass transport in a bioreactor for cartilage tissue engineering. Biotechnol Prog 18:951–963.

    CrossRef  PubMed  CAS  Google Scholar 

  • Wu SC. 1999. Influence of hydrodynamic shear stress on microcarrier attached cell growth: cell line dependency and surfactant protection. Bioproc Eng 21:201–206.

    CrossRef  CAS  Google Scholar 

  • Wu SC, Huang GYL. 2000. Hydrodynamic shear forces increase Japanese encephalitis virus production from microcarrier grown VERO cells. Bioproc. Eng. 23:229–233.

    CrossRef  CAS  Google Scholar 

  • Yoshikawa N, Ariyoshi H, Ikeda M, Sakon M, Kawasaki T, Monden M. 1997. Shear stress causes polarized change in cytoplasmic calcium concentration in human umbilical vein endothelial cells. Cell Calcium 22:189–194.

    CrossRef  PubMed  CAS  Google Scholar 

  • Zhang S, Hand-Corrigan A, Spier RE. 1992. Oxygen transfer properties of bubbles in animal cell culture media. Biotech. Bioeng. 40:252–259.

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Curran, S., Black, R. (2005). Taylor-Vortex Bioreactors for Enhanced Mass Transport. In: Chaudhuri, J., Al-Rubeai, M. (eds) Bioreactors for Tissue Engineering. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3741-4_3

Download citation