Skip to main content

Bioreactor Systems for Tissue Engineering: A Four-Dimensional Challenge

  • Chapter

Conclusions

The in vitro creation of three-dimensional tissues will require well-controlled culture tools to maximise nutrient mass transfer, allow the culture of multiple cell types, and assert mechanical forces on the cells. The development of bioreactor technologies will help greatly in this respect. Although still in its infancy, there are some basic design rules and general biological and physical considerations that we can integrate to create bioreactor systems that will manage the complex interactions that exist in tissue between individual cells, between cells and the matrix and cells and their environment. Furthermore, it is also becoming clear that a single bioreactor type will not be suitable to grow all tissue types. Bespoke bioreactor systems will be required for specific tissues or classes of tissue. This chapter has not detailed all of the issues related to tissue engineering bioreactors; its aim was to outline the key features that will contribute to the development of dynamic culture systems for the growth of human tissues. The following chapters in this book provide a source of knowledge on different aspects of bioreactor design and operation that we hope will provide a foundation for the future successful development of tissue engineering.

Keywords

  • Tissue Engineering
  • Tissue Engineer
  • Bioreactor System
  • Spinner Flask
  • Tissue Construct

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/1-4020-3741-4_1
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-3741-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott A. 2003. Biology’s new dimension. Nature 424:870–872.

    CrossRef  PubMed  CAS  Google Scholar 

  • Asenjo JA, Merchuk JC, editors. 1995. Bioreactor System Design. New York: Marcel Dekker.

    Google Scholar 

  • Basso N, Heersche JNM. 2002. Characteristics of in vitro osteoblastic cell loading models. Bone 30(2):347–351.

    CrossRef  PubMed  CAS  Google Scholar 

  • Begley C, Kleis S. 2000. The fluid dynamic and shear environment in the NASA/JSC rotating-wall perfused-vessel bioreactor. Biotechnology & Bioengineering 70(1.):32–40.

    CrossRef  CAS  Google Scholar 

  • Beresford JN, Owen ME, editors. 1998. Marrow stromal cell culture. 1 ed. Cambridge: Cambridge University Press. 153 p.

    Google Scholar 

  • Bock G, Goode J, editors. 2003. Tissue Engineering of Cartilage and Bone. Chichester: John Wiley & Sons Ltd.

    Google Scholar 

  • Boyan BD, Hummert TW, Dean DD, Schwartz Z. 1996. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17(2):137–146.

    CrossRef  PubMed  CAS  Google Scholar 

  • Buckwalter A, Glimcher MJ, Cooper R, Recker R. 1996. Bone biology. Journal of Bone Joint Surgery 77A:1256–1289.

    Google Scholar 

  • Burrows MT. 1912. A method of furnishing a continuous supply of new medium to a tissue culture. In Vitro Anat. Rec 6:141.

    CrossRef  Google Scholar 

  • Cabral JMS. 2001. Ex vivo expansion of hematopoietic stem cells in bioreactors. Biotechnology Letters 23:741–751.

    CrossRef  CAS  Google Scholar 

  • Carrel A. 1923. A method for the physiological study of tissues. In Vitro. J. Exper. Med. 38:407.

    CrossRef  Google Scholar 

  • Carver S, Heath C. 1999. Semi-continuous perfusion system for delivering intermittent physiological pressure to regeneration cartilage. Tissue Engineering 5:1-.

    PubMed  CAS  Google Scholar 

  • Chiou T, Murakami S, Wang D, Wu W. 1991. A fibre-bed bioreactor for anchorage dependent animal cell cultures. part 1 — bioreactor design and operations. Biotechnology and Bioengineering 37:755–761.

    CrossRef  CAS  PubMed  Google Scholar 

  • Chiquet M. 1999. Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biology 18(5):417–426.

    CrossRef  PubMed  CAS  Google Scholar 

  • Cohen S, Yoshioka T, Lucarelli M, Hwang LH, Langer R. 1991. Controlled Delivery Systems for Proteins Based on Poly(Lactic Glycolic Acid) Microspheres. Pharmaceutical Research 8(6):713–720.

    CrossRef  PubMed  CAS  Google Scholar 

  • Collins PC, Miller WM, Papoutsakis ET. 1998. Stirred culture of peripheral and cord blood hematopoietic cells offers advantages over traditional static systems for clinically relevant applications. Biotechnology and Bioengineering 59:534–543.

    CrossRef  PubMed  CAS  Google Scholar 

  • Dennis R, Kosnik P. 2000. Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in-vitro. In-vitro Cell. Dev. Biol. Anim 36(5):327–335.

    CAS  CrossRef  Google Scholar 

  • Doolin E, Geldziler B, Strande L, Kain M, Hewitt C. 1999. Effects of microgravity on growing cultured skin constructs. Tissue Engineering 5:573.

    PubMed  CAS  Google Scholar 

  • Endy D, Brent R. 2001. Modelling cellular behaviour. Nature 409:391–395.

    CrossRef  PubMed  CAS  Google Scholar 

  • Freed LE, Vunjak-Novakovic G. 1995. Cultivation of cell-polymer tissue construct in simulated microgravity. Biotechnology & Bioengineering 46:306–313.

    CrossRef  CAS  Google Scholar 

  • Freed LE, Vunjak-Novakovic G. 1997. Tissue culture bioreactors: chondrogenesis as a model system. In: Lanza RP, Langer R, Chick WL, editors. Principles of Tissue Engineering: R.G. Landes Company. p 151–165.

    Google Scholar 

  • Gooch KJ, Kwon JH, Blunk T, Langer R, Freed LE, Vunjak-Novakovic G. 2001. Effects of mixing intensity on tissue-engineered cartilage. Biotechnology and Bioengineering 72(4):402–407.

    CrossRef  PubMed  CAS  Google Scholar 

  • Granet C, Laroche N, Vico L, Alexandre C, Lafage-Proust MH. 1998. Rotating-wall vessels, promising bioreactors for osteoblastic cell culture: comparison with other 3D conditions. Medical & Biological Engineering & Computing 36(4):513–519.

    CAS  Google Scholar 

  • Gray C, Boyde A, Jones S. 1996. Topographically Induced Bone Formation In Vitro: Implications for Bone Implants and Bone Grafts. Bone 18(2):115–123.

    CrossRef  PubMed  CAS  Google Scholar 

  • Griffiths B. 1990. Perfusion systems for cell cultivation.. In: Freshney R, editor. Animal Cell Culture — A Practical Approach. Oxford: IRL Press.

    Google Scholar 

  • Hoerstrup S, Sodian R, Sperling J, Vacanti J, Mayer J. 2000. New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Engineering 6:75-.

    CrossRef  PubMed  CAS  Google Scholar 

  • Holy CE, Shoichet MS, Davies JE. 2000. Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: Investigating initial cell-seeding density and culture period. Journal of Biomedical Materials Research 51(3):376–382.

    CrossRef  PubMed  CAS  Google Scholar 

  • Hulbert SF, Young F, Matthews RS, Klawitter JJ, Talbert CD, Stelling FH. 1970. The potential of ceramic materials as permanently implantable skeletal prostheses. Journal of Biomedical Materials Research 4:433–456.

    CrossRef  PubMed  CAS  Google Scholar 

  • Ishii I, Tomizawa A, Kawachi H, Suzuki T, Kotani A, Koshushi I, Itoh H, Morisaki N, Bujo H, Saito Y and others. 2001. Histological and functional analysis of vascular smooth muscle cells in a novel culture system with honeycomb-like structure. Atherosclerosis 158(2):377–384.

    CrossRef  PubMed  CAS  Google Scholar 

  • Jin Q-M, Takita H, Kohgo T, Atsumi K, Itoh H, Kuboki Y. 2000. Effects of geometry of hydroxyapatite as a cell substratum in BMP-induced ectopic bone formation. Journal of Biomedical Materials 52:491–499.

    CrossRef  CAS  Google Scholar 

  • Klawitter JJ, Hulbert SF. 1971. Application of porous ceramics for the attachment of load-bearing internal orthopedic applications. Journal of Biomedical Materials Research Symp 2:161.

    CrossRef  Google Scholar 

  • Lauffenburger D, Griffith LG. 2001. Who’s got the pull around here? Cell organization in development and tissue engineering. Proceedings of the National Academy of Science of the USA 98(8):4282–4284.

    CrossRef  CAS  Google Scholar 

  • Lee G, Palsson B. 1990. Immobilisation can improve the stability of hybridoma antibody productivity in serum free media. Biotechnology & Bioengineering 36:1049–1055.

    CrossRef  CAS  Google Scholar 

  • Lindbergh C. 1939. A culture flask for the circulation of a large quantity of fluid medium. J. Exper. Med. 70:231.

    CrossRef  Google Scholar 

  • Marks SC, Hermey DC. 1996. The structure and development of bone. In: Bilezikian JP, Raisz LG, Rodan GA, editors. Principles of Bone Biology. San Diego: Academic Press.

    Google Scholar 

  • Martin I, Wendt D, Heberer M. 2004. The role of bioreactors in tissue engineering. Trends in Biotechnology 22(2):80–86.

    CrossRef  PubMed  CAS  Google Scholar 

  • Palsson B. 2000. Tissue Engineering. In: Enderle JD, Blanchard SM, Bronzino JD, editors. Introduction to Biomedical Engineering. San Diego: Academic Press. p 579–655.

    Google Scholar 

  • Peter SJ, Miller ST, Zhu G, Yasko AW, Mikos AG. 1998. In vivo degradation of a ploy(propylene fumarate)/beta-tricalcium phosphate injectable composite scaffold. Journal of Biomedical Materials Research 41:1–7.

    CrossRef  PubMed  CAS  Google Scholar 

  • Rose FRAJ, Oreffo ROC. 2002. Bone tissue engineering: Hope vs hype. Biochemical and Biophysical Communications 292:1–7.

    CrossRef  CAS  Google Scholar 

  • Rose G. 1954. Separable and multipurpose tissue culture chamber. Texas Rep. Biol. And Med.. 12:1074.

    CAS  Google Scholar 

  • Salem AK, Rose F, Oreffo ROC, Yang XB, Davies MC, Mitchell JR, Roberts CJ, Stolnik-Trenkic S, Tendler SJB, Williams PM and others. 2003. Porous polymer and cell composites that self-assemble in situ. Advanced Materials 15(3):210-+.

    CrossRef  CAS  Google Scholar 

  • Schwartz Z, Lohmann CH, Oefinger J, Bonewald LF, Dean DD, Boyan BD. 1999. Implant surface characteristics modulate differentiation behaviour of cells in the osteoblastic lineage. Advances in Dental Research 13:38–48.

    PubMed  CAS  CrossRef  Google Scholar 

  • Schwartz Z, Lohmann CH, Sisk M, Cochran DL, Sylvia VL, Simpson J, Dean DD, Boyan BD. 2001. Local factor production by MG63 osteoblast-like cells in response to surface roughness and 1,25-(OH)(2)D-3 is mediated via protein kinase C-and protein kinase A-dependent pathways. Biomaterials 22(7):731–741.

    CrossRef  PubMed  CAS  Google Scholar 

  • Scragg A. 1991. Bioreactors in biotechnology: A practical approach. Chichester: Ellis Horwood Ltd.

    Google Scholar 

  • Sinclair A, Ashley MHJ. 1995. Sterilization and containment. In: Asenjo JA, Merchuk JC, editors. Bioreactor System Design. New York: Marcel Dekker. p 553–588.

    Google Scholar 

  • Stephansson SN, Byers BA, Garcia AJ. 2002. Enhanced expression of the osteoblastic phenotype on substrates that modulate fibronectin conformation and integrin receptor binding. Biomaterials 23:2527–2534.

    CrossRef  PubMed  CAS  Google Scholar 

  • Strehl R, Schumacher K, de Vries U, Minuth W. 2002. Proliferating cells versus differentiated cells in tissue engineering. Tissue Engineering 8(1):37–42.

    CrossRef  PubMed  Google Scholar 

  • Tharakan J, Chau P. 1986. A radial flow hollow fibre bioreactor for the large scale culture of mammalian cells. Biotechnology and Bioengineering 28:329–342.

    CrossRef  CAS  PubMed  Google Scholar 

  • Unsworth BR, Lelkes PI. 1998. Growing tissues in microgravity. Nature Medicine 4(8):901–907.

    CrossRef  PubMed  CAS  Google Scholar 

  • Whang K, Healy KE, Elenz DR, Nam EK, Tsai DC, Thomas CH, Nuber GW, Glorieux FH, Travers R, Sprague SM. 1999. Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Engineering 5(1):35–51.

    PubMed  CAS  Google Scholar 

  • Yang S, Leong K-F, Du Z, Chua C-K. 2001. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Engineering 7(6):679–689.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Ellis, M., Jarman-Smith, M., Chaudhuri, J. (2005). Bioreactor Systems for Tissue Engineering: A Four-Dimensional Challenge. In: Chaudhuri, J., Al-Rubeai, M. (eds) Bioreactors for Tissue Engineering. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3741-4_1

Download citation