Skip to main content

Haematopoietic Culture Systems

  • Chapter

Conclusions

Haematopoietic stem cells have been applied successfully in the clinic for over 30 years. This experience, the relative ease with which HSCs can be identified and obtained from a variety of sources and the potential plasticity of these cells makes them ideal for use in haematologic and non-haematologic conditions. Despite these advantages and the significant progress that has been made in the characterisation of factors that govern haematopoiesis, enrichment and ex vivo expansion of repopulating (and possibly plastic) HSCs remains elusive. Conventional 2-D cultures are insufficient to meet the complex demands required and small deviations in the culture parameters can profoundly affect the final cell output. The application of factorial and composite designs to HSC cultures is required in order to fully appreciate the effects and interdependence of stimulatory and inhibitory factors as well as the culture parameters on haematopoietic culture systems. Furthermore, ex vivo expanded HSCs must be safe to use in humans and meet regulations guided by good manufacturing practice (GMP) requirements for clinical therapeutics which includes the development of suitable, closed culture systems that can be easily controlled and monitored. The engineering of optimal haematopoietic cell culture systems requires the design of new expansion systems that mimic the in vivo bone marrow environment that is able to self-regulate and operate under reliable and reproducible conditions. Such a system would offer a broad spectrum of possibilities for different culture strategies in the cultivation of various cell types — from stem cells to differentiated cells for gene, cellular, and tissue therapies.

Keywords

  • Stem Cell
  • Stem Cell Factor
  • Stem Cell Research
  • Human Bone Marrow
  • Perfusion Culture

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/1-4020-3741-4_14
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-3741-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abboud CN, Lichtman MA. 2001. Structure of the Marrow and the Hemopoietic Microenvironment. In: Seligsohn U, editor. Hematology. New York: McGraw-Hill. p 29–58.

    Google Scholar 

  • Aiuti A, Friedrich C, Sieff C, Gutierrez-Ramos J. 1998. Identification of distinct elements of the stromal microenvironment that control human hematopoietic stem/progenitor cell growth and differentiation. Experimental Hematology 26:143–157.

    PubMed  CAS  Google Scholar 

  • Akatov V, Lezhnev, EI., Vexler, AM., Kublik, LN. 1985. Low pH value of pericellular medium as a factor limiting cell proliferation in dense cultures. Experimental Cell Research 160:412–418.

    CrossRef  PubMed  CAS  Google Scholar 

  • Alley C, MacDermott, RP., Stewart, CC. 1983. The Effect of Serum on Human Marrow Mononuclear Cell Proliferation and Maturation. Journal of the Reticuloendothelial Society 34:271–278.

    PubMed  CAS  Google Scholar 

  • Almeida-Porada G, Brown, RL., MacKintosh, FR., Zanjani, ED. 2000. Evaluation of Serum-Free Culture Conditions Able to Support the Ex Vivo Expansion and Engraftment of Human Hematopoietic Stem CElls in Human-to Sheep Xenograft Model. Journal of Hematotherapy & Stem Cell Research 9:683–693.

    CrossRef  CAS  Google Scholar 

  • Audet J, Zanstra, PW., Eaves, CJ., Piret, JM. 1998. Advances in hematopoietic stem cell culture. Current Opinion in Biotechnology 9:146–151.

    CrossRef  PubMed  CAS  Google Scholar 

  • Bachier CR, Gokmen E, Teale J, Lanzkron S, Childs C, Franklin W, Shpall E, Douville J, Weber S, Muller T and others. 1999. Ex-vivo expansion of bone marrow progenitor cells for hematopoietic reconstitution following high-dose chemotherapy for breast cancer. Experimental Hematology 27:615–623.

    CrossRef  PubMed  CAS  Google Scholar 

  • Bagley J, Rosenzweig, M., Mark, DF., Pykett, MJ. 1999. Extended culture of multipotent hematopoietic progenitors without cytokine augmentation in a novel three-dimensional device. Experimental Hematology 27:496–504.

    CrossRef  PubMed  CAS  Google Scholar 

  • Barnett MJ, Eaves CJ, Phillips GL, Gascoyne RD, Hogge DE, Horsman DE, Humphries RK, Klingemann HG, Lansdorp PM, Nantel SH and others. 1994. Autografting with cultured marrow in chronic myeloid leukemia: results of a pilot study. Blood 84:724–732.

    PubMed  CAS  Google Scholar 

  • Bhatia M, Bonnet D, Wu D, Murdoch B, Wrana J, Gallacher L, Dick JE. 1999. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. Journal of Experimental Medicine 189:1139–1148.

    CrossRef  PubMed  CAS  Google Scholar 

  • Bhatia M, McGlave PB, Dewald GW, Blazar BR, Verfaillie CM. 1995. Abnormal function of the bone marrow microenvironment in chronic myelogenous leukemia: role of malignant stromal macrophages. Blood 85:3636–3645.

    PubMed  CAS  Google Scholar 

  • Bohmer R. 1989. Interaction of Serum and Colony-Stimulating Factor for Survival of a Factor-Dependent Hemopoietic Progenitor Cell Line. Journal of Cellular Physiology 139:531–537.

    CrossRef  PubMed  CAS  Google Scholar 

  • Brandt J, Bhalla, K., Hoffman, R. 1994. Effects of interleukin-3 and c-kit ligand on the survival of various classes of human hematopoietic progenitor cells. Blood 83(6):1507–1514.

    PubMed  CAS  Google Scholar 

  • Bregni M, Magni M, Siena S, Di Nicola M, Bonadonna G, Gianni AM. 1992. Human peripheral blood hematopoietic progenitors are optimal targets of retroviral-mediated gene transfer. Blood 80:1418–1422.

    PubMed  CAS  Google Scholar 

  • Broudy VC. 1997. Stem cell factor and hematopoiesis. Blood 90:1354–1364.

    Google Scholar 

  • Brown R, Xu, FS., Dusing, SK., Li, Q., Fischer, R., Patchen, M. 1997. Serum-Free Conditions for Cells Capable of Producing Long-Term Survival in Lethally Irradiated Mice. Stem Cells 15:237–245.

    PubMed  CAS  Google Scholar 

  • Broxmeyer HE, Sherry B, Cooper S, Lu L, Maze R, Beckmann MP, Cerami A, Ralph P. 1993. Comparative analysis of the human macrophage inflammatory protein family of cytokines (chemokines) on proliferation of human myeloid progenitor cells. Interacting effects involving suppression, synergistic suppression, and blocking of suppression. Journal of Immunology 150:3448–3458.

    CAS  Google Scholar 

  • Brugger W, Mocklin W, Heimfeld S, Berenson RJ, Mertelsmann R, Kanz L. 1993. Ex vivo expansion of enriched peripheral blood CD34+ progenitor cells by stem cell factor, interleukin-1 (IL-1), IL-6, IL-3, interferon g and erythropoietin. Blood 81:2579–2584.

    PubMed  CAS  Google Scholar 

  • Cabral JMS. 2001. Ex vivo expansion of hematopoietic stem cells in bioreactors. Biotechnology Letters 23:741–751.

    CrossRef  CAS  Google Scholar 

  • Cairo MS, Wagner JE. 1997. Placental and/or umbilical cord blood: an alternative source of hematopoietic stem cells for transplantation. Blood 90:4664–4671.

    Google Scholar 

  • Caldwell J, Locey B, Clarke MF, Emerson SG, Palsson BO. 1991a. Influence of medium exchange schedules on metabolic, growth, and GM-CSF secretion rates of genetically engineered NIH-3T3 cells. Biotechnology Progress 7:1–8.

    CrossRef  PubMed  CAS  Google Scholar 

  • Caldwell J, Palsson BO, Locey B, Emerson SG. 1991b. Culture perfusion schedules influence the metabolic activity and granulocyte-macrophage colony-stimulating factor production rates of human bone marrow stromal cells. Journal of Cellural Physiology 147:344–353.

    CrossRef  CAS  Google Scholar 

  • Carswell K, Papoutsakis, ET. 2000. Extracellular pH affects the proliferation of cultured human T-cells and their expression of the interleukin-2 receptor. Journal of Immunology 23(6):669–674.

    CAS  Google Scholar 

  • Chabannon C, Olivero S, Blaise D, Maraninchi D, Viens P. 2000. Ex vivo expansion of human hematopoietic progenitors and cells to support high-dose chemoradiation therapy: Five years of clinical experience. Cytokines, Cellular & Molecular Therapy 6:97–108.

    CrossRef  CAS  Google Scholar 

  • Charbord P. 2001. Microenvironmental Cell Populations Essential for the Support of Hematopoietic Stem Cells. In: Zon LI, editor. Hematopoiesis: A Developmental Approach. New York: Oxford University Press. p 691–701.

    Google Scholar 

  • Chute JP, Saini AA, Kampen RL, Wells MR, Davis TA. 1999. A comparative study of the cell cycle status and primitive cell adhesion molecule profile of human CD34+ cells cultured in stroma-free versus porcine microvascular endothelial cell cultures. Experimental Hematology 27:370–379.

    CrossRef  PubMed  CAS  Google Scholar 

  • Cipolleschi M, D’Ippolito, G., Bernabei, PA., Caporale, R., Nannini, R., Mariani, M., Fabbiani, M., Rossi-Ferrini, P., Olivotto, M., Sbarba, PD. 1997. Severe hypoxia enhances the formation of erythroid bursts from human cord blood cells and the maintenance of BFU-E in vitro. Experimental Hematology 25:1187–1194.

    PubMed  CAS  Google Scholar 

  • Cipolleschi MG, Dello Sbarba P, Olivotto M. 1993. The role of hypoxia in the mainetance of hematopoietic stem cells. Blood 82:2031–2037.

    PubMed  CAS  Google Scholar 

  • Civin CI, Almeida-Porada G, Lee MJ, Olweus J, Terstappen LW, Zanjani ED. 1996. Sustained, retransplantable, multilineage engraftment of highly purified adult human bone marrow stem cells in vivo. Blood 88:4102–4109.

    PubMed  CAS  Google Scholar 

  • Collins P, Miller, WM., Papoutsakis, ET. 1996. Ex vivo culture systems for hematopoietic cells. Current Opinion in Biotechnology 7(2):223–230.

    CrossRef  PubMed  CAS  Google Scholar 

  • Collins PC, Miller ME, Papoutsakis ET. 1998. Stirred culture of peripheral and cord blood hematopoietic cells offers advantages over traditional static systems for clinically relevant applications. Biotechnology & Bioengineering 59:534–543.

    CrossRef  CAS  Google Scholar 

  • Coutinho LH, Testa NG, Chang J, Morgenstern G, Harrison C, Dexter TM. 1990. The use of cultured bone marrow cells in autologous transplantation. Progress in Clinical and Biological Research 333:415–432.

    PubMed  CAS  Google Scholar 

  • Craig W, Kay R, Cutler RL, Lansdorp PM. 1993. Expression of Thy-1 on human hematopoietic progenitor cells. Journal of Experimental Medicine 177:1331–1342.

    CrossRef  PubMed  CAS  Google Scholar 

  • Dao MA, Hashimo K, Kato I, Nolta JA. 1998. Adhesion to fibronectin maintains regenarative capacity during ex vivo culture and transduction of human hematopoietic stem and progenitor cells. Blood 92:4612–4621.

    PubMed  CAS  Google Scholar 

  • De La Selle V, Gluckman E, Bruley-Rosset M. 1996. Newborn blood can engraft adult mice without inducing graft versus host disease across non H-2 antigens. Blood 87:3977–3984.

    Google Scholar 

  • Dexter TM, Allen TD, Lajtha LG. 1977. Conditions controlling the proliferation of haematopoietic stem cells in vivo. Journal of Cellular Physiology 91:335–344.

    CrossRef  PubMed  CAS  Google Scholar 

  • Douay L. 2001. Experimental Culture Conditions Are Critical for Ex Vivo Expansion of Hematopoietic Cells. Journal of Hematotherapy & Stem Cell Research 10:341–346.

    CrossRef  CAS  Google Scholar 

  • Dybedal I, Jacobsen SE. 1995. Transforming growth factor beta (TGF-beta), a potent inhibitor of erythropoiesis: neutralizing TGF-beta antibodies show erythropoietin as a potent stimulator of murine burst-forming unit erythroid colony formation in the absence of a burst-promoting activity. Blood 86:949–957.

    PubMed  CAS  Google Scholar 

  • Eaves CJ, Cashman JD, Kay RJ, Dougherty GJ, Otsuka T, Gaboury LA, Hogge DE, Lansdorp PM, Eaves AC, Humphries RK. 1991. Mechanisms that regulate the cell cycle status of very primitive hematopoietic cells in long-term human marrow cultures. II. Analysis of positive and negative regulators produced by stromal cells within the adherent layer. Blood 78:110–117.

    PubMed  CAS  Google Scholar 

  • Eaves CJ, Eaves AC. 1997. Stem cell kinetics. Baillieres Clinical Haematology 10:233–257.

    CAS  Google Scholar 

  • Emmons RV, Doren S, Zujewski J, Cottler-Fox M, Carter CS, Hines K, O’shaughnessy JA, Leitman SF, Greenblatt JJ, Cowan K and others. 1997. Retroviral gene transduction of adult peripheral blood or marrow-derived CD34+ cells for six hours without growth factors or on autologous stroma does not improve marking efficiency assessed in vivo. Blood 89:4040–4046.

    PubMed  CAS  Google Scholar 

  • Endo T, Ishibashi, Y., Okana, H., Fukumaki, Y. 1994. Sgnificance of pH on differentiation of human erythroid cell lines. Leukemia Research 18:49–54.

    CrossRef  PubMed  CAS  Google Scholar 

  • Erslev A, et al. 1983. Structure and function of the marrow. al. WWe, editor: New York: McGraw-Hill. 75-83 p.

    Google Scholar 

  • Fischkoff S, Pollak, A., Gleich, GJ., Testa, JR., Misawa, S., Reber, TJ. 1984. Eosinophilic differentiation of the human promyelocytic leukemia cell line. Journal of Experimental medicine 160:179–196.

    CrossRef  PubMed  CAS  Google Scholar 

  • Fortunel N, Hatzfeld, A. and Hatzfeld, JA. 2000. Transforming growth factor-B: pleiotropic role in the regulation of hematopoiesis. Blood 96(6):2022–2036.

    PubMed  CAS  Google Scholar 

  • Gartner S, Kaplan, HS. 1980. Long-term culture of human bone marrow cells. Proc. Natl. Acad. Sci. (USA) 77:4756–4759.

    PubMed  CAS  Google Scholar 

  • Giarratana M-C, Kobari, L., Neildez Nguyen, TMA., Firat, H., Bouchet, S., Lopez, M., Gorin, N-C., Thierry, D., Douay, L. 1998. Cell culture bags allow a large extent of ex vivo expansion of LTC-IC and functional mature cells which can subsequently be frozen: interest for large-scale clinical appplication. Bone Marrow Transplantation 22(7):707–715.

    CrossRef  PubMed  CAS  Google Scholar 

  • Goodell M, Brose K, Paradis G, Conner A, Mulligan A. 1996. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. Journal of Experimental Medicine 183:1797–1806.

    CrossRef  PubMed  CAS  Google Scholar 

  • Guba S, Gottschalk, LR., Jing, YH., Mulligan, T., Emerson, SG. 1992. Bone marrow stromal fibroblasts secrete interleukin-6 and granulocyte-macrophage colony-stimulating factor in the absence of inflammatory stimulation: demonstration by serum-free bioassay, enzyme-linked immunosorbent assay, and reverse transcriptase polymerase chain reaction. Blood 80(5):1190–1198.

    PubMed  CAS  Google Scholar 

  • Haylock DN, To LB, Dowse TL, Juttner CA, Simmons PJ. 1992. Ex vivo expansion and maturation of peripheral blood CD34+ cells into the myeloid lineage. Blood 80:1405–1412.

    PubMed  CAS  Google Scholar 

  • Hevehan D, Papoutsakis, ET., Miller, WM. 2000. Physiologically significant effect of pH and oxygen tension on granulopoiesis. Experimental Hematology 28:267–275.

    CrossRef  PubMed  CAS  Google Scholar 

  • Highfill J, Haley, SD., Kompala, DS. 1996. Large-scale production of murine bone marrow cells in an airlift packed bed bioreactor. Biotechnology and Bioengineering 50:514–520.

    CrossRef  CAS  PubMed  Google Scholar 

  • Holyoake TL, Freshney MG, McNair L, Parker AN, McKay PJ, Steward WP, Fitzsimons E, Graham GJ, Pragnell IB. 1996. Ex vivo expansion with stem cell factor and interleukin-11 augments both short-term recovery posttransplant and the ability to serially transplant marrow. Blood 87:4589–4595.

    PubMed  CAS  Google Scholar 

  • Horner M, Miller ME, Ottino JM, Papoutsakis ET. 1998. Transport in a grooved perfusion flat-bed bioreactor for cell therapy applications. Biotechnology Progress 14:689–698.

    CrossRef  PubMed  CAS  Google Scholar 

  • Ishikawa Y, Ito, T. 1988. Kinetics of hematopietic stem cells in a hypoxic culture. European Journal of Haematology 40:126–129.

    PubMed  CAS  Google Scholar 

  • Ivanovic Z, Bartolozzi, B., Bernabei, PA., et al. 2000. Incubation of murine bone marrow cells in hypoxia ensures the maintenance of marrow-repopulating ability together with the expansion of commited progenitors. British Journal of Haematology 108:424–429.

    CrossRef  PubMed  CAS  Google Scholar 

  • Ivanovic Z, Belloc, F., Faucher, J., et al. 2002. Hypoxia maintains and interleukin-3 reduces the pre-colony-forming cell potential of dividing CD34+ murine bone marrow. Experimental Hematology 30:67–73.

    CrossRef  PubMed  CAS  Google Scholar 

  • Jeevarajan A. 2002. Continuous pH Monitoring in a Perfused Bioreactor System Using an Optical pH Sensor. Biotechnology AND Bioengineering 78(4):467–472.

    CrossRef  CAS  Google Scholar 

  • Kanai M, Hirayama, F., Yamaguchi, M., Ohkawara, J., Sato, N., Fukazawa, K., Yamashita, K., Kuwabara, M., Ikeda, H. & Ikebuchi, K. 2000. Stromal cell-dependent ex vivo expansion of human cord blood and augmentation of transplantable stem cell activity. Bone Marrow Transplantation 26:837–844.

    CrossRef  PubMed  CAS  Google Scholar 

  • Karanu FN, Murdoch B, Gallacher L, Wu DM, Koremoto M, Sakano S, Bhatia M. 2000. The notch ligand jagged-1 represents a novel factor of human hematopoietic stem cells. Journal of Experimental Medicine 192:1365–1372.

    CrossRef  PubMed  CAS  Google Scholar 

  • Kim D, Fujiki, Y., Fukushima, T., Ema, H., Shibuya, A., Nakauchi, H. 1999. Comparison of Hematopoietic Activities of Human Bone Marrow and Umbilical Cord Blood CD34 Positive and Negative Cells. Stem Cells 17:286–294.

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Laver JH, D LS, Kato T, Miyazaki H, Ogawa M. 1996. Thrombopoietin supports proliferation of human primitive hematopoietic cells in synergy with steel factor and/or interleukin-3. Blood 88:429–436.

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Laver JH, Lyman SD, Kato T, Miyazaki H, Ogawa M. 1997. Thrombopoietin, steel factor and the ligand for flt3/flk2 interact to stimulate the proliferation of human hematopoietic progenitors in culture. International. Journal of Hematology 66:423–434.

    CrossRef  PubMed  CAS  Google Scholar 

  • Koller M, Bender, JG., Papoutsakis, ET. & Miller, WM. 1992a. Effects of synergistic cytokine combinations, low oxygen, and irradiated stroma on the expansion of human cord blood progenitors. Blood 80(2):403–411.

    PubMed  CAS  Google Scholar 

  • Koller M, Emerson, SG. & Palsson, BO. 1993. Large-Scale Expansion of Human Stem and Progenitor Cells From Bone Marrow Mononuclear Cells in Continuous Perfusion Cultures. Blood 82(2):378–384.

    PubMed  CAS  Google Scholar 

  • Koller M, et al. 1992b. Reduced Oxygen Tension Increases Hematopoiesis in Long-term Culture of Human Stem and Progenitor Cells from Cord Blood and Bone Marrow. Experimental Hematology 20:264–270.

    PubMed  CAS  Google Scholar 

  • Koller M, Manchel, I., Maher, RJ., Goltry, KL., Armostrong, D., Smith, AK. 1998. Clinical-Scale Human Umbilical Cord Blood Cell Expansion in a Novel Automated Perfusion Culture System. Bone Marrow Transplantation 21:653–663.

    CrossRef  PubMed  CAS  Google Scholar 

  • Koller M, Manchel, I., Palsson, MA., Maher, RJ. 1996. Different Measures of Human Hematopoietic Cell Culture Performance Are Optimized under Vastly Different Conditions. Biotechnology and Bioengineering 50:505–513.

    CrossRef  CAS  PubMed  Google Scholar 

  • Koller MR, Bender JG, Miller ME, Papoutsakis ET. 1993. Expansion of primitive human hematopoietic progenitors in a perfusion bioreactor system with IL-3, IL-6, and stem cell factor. Bio/Technology 11:358–63.

    CrossRef  PubMed  CAS  Google Scholar 

  • Koller MR, Bradley TR, Palsson BO. 1995a. Growth factor consumption and production in perfusion cultures of human bone marrow correlate with specific cell production. Experimental Hematology 23:1275–1283.

    PubMed  CAS  Google Scholar 

  • Koller MR, Manchel I, Newsom BS, Palsson MA, Palsson BO. 1995b. Bioreactor expansion of human bone marrow: comparison of unprocessed, density-separated and CD34-enriched cells. Journal of Hematotherapy 4:159–169.

    PubMed  CAS  Google Scholar 

  • Koller MR, Oxender M, Jensen TC, Goltry KL, Smith AK. 1999. Direct contact between CD34+/Lin-cells and stroma induces a soluble activity that specifically increases primitive hematopoietic cell production. Experimental Hematology 27:734–741.

    CrossRef  PubMed  CAS  Google Scholar 

  • Krause DS, Fackler MJ, Civin CI, May WS. 1996. CD34: structure, biology, and clinical utility. Blood 87:1–13.

    PubMed  CAS  Google Scholar 

  • Krystal G, Lanm V, Dragowska W, Takahashi C, Appel J. 1994. Transforming growth factor beta 1 is an inducer of erythroid differentiation. Journal of Experimental Medicine 180:851–860.

    CrossRef  PubMed  CAS  Google Scholar 

  • Lansdorp PD, W. 1992. Long-Term Erythropoiesis from Constant Numbers of CD34+ Cells in Serum-free Cultures initiated with Highly Purified Progenitor Cells from Human Bone Marrow. Journal of Experimental Medicine 175:1501–1509.

    CrossRef  PubMed  CAS  Google Scholar 

  • Larochelle A, Vormoor J, Hanenberg H, Wang JC, Bhatia M, Lapidot T, Moritz T, Murdoch B, Xiao XL, Kato I and others. 1996. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nature Medicine 2:1329–1337.

    CrossRef  PubMed  CAS  Google Scholar 

  • Lill MC, Lynch M, Fraser JK, Chung GY, Schiller G, Glaspy JA, Souza L, Baldwin GC, Gasson JC. 1994. Production of functional myeloid cells from CD34-selected hematopoietic progenitor cells using a clinically relevant ex vivo expansion system. Stem Cells 12:626–637.

    PubMed  CAS  CrossRef  Google Scholar 

  • Lyman SD, Jacobsen SE. 1998. c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood 91:1101–1134.

    PubMed  CAS  Google Scholar 

  • Lyman SD, Williams DE. 1995. Biology and potential clinical applications for flt3 ligand. Current Opinion in Hematology 2:177–181.

    PubMed  CAS  CrossRef  Google Scholar 

  • Madlambayan GJ, Rogers I, Casper RF, Zandstra PW. 2001. Controlling Culture Dynamics for the Expansion of Hematopoietic Stem Cells. Journal of Hematotherapy & Stem Cell Research 10:481–492.

    CrossRef  CAS  Google Scholar 

  • Mantalaris A, Keng P, Bourne P, Chang AYC, Wu JHD. 1998. Engineering a human bone marrow model: A case study on ex vivo erythropoiesis. Biotechnology Progress 14:126–133.

    CrossRef  PubMed  CAS  Google Scholar 

  • Martiat P, Ferrant, A., Cogneau, M., Bol, A., Rodhain, J., Michaux, JL., Sokal, G. 1987. Assessment of bone marrow blood flow using positron emmission tomography: No relationship with bone cellularity. Brithish Journal of Haematology 66:307–310.

    CAS  Google Scholar 

  • Martinson J, Unverzagt, K., Schaeffer, A., Smith, SL., Loudovaris, M., Schneidkraut, MJ., Bender, JG. and Van Epps, DE. 1998. Neutrophil Precursor Generation: Effect of Culture Conditions. Journal of Hematotherapy 7:463–471.

    PubMed  CAS  Google Scholar 

  • Matsunaga T, Hirayama F, Yonemura Y, Murray R, Ogawa M. 1998. Negative regulation by interleukin-3 (IL-3) of mouse early B-cell progenitors and stem cells in culture: transduction of the negative signals by betac and betaIL-3 proteins of IL-3 receptor and absence of negative regulation by granulocyte-macrophage colony-stimulating factor. Blood 92:901–907.

    PubMed  CAS  Google Scholar 

  • Mayani H. 1996. Composition and function of the hematopoietic microenvironment in human myeloid leukemia. Leukemia 10:1041–1047.

    PubMed  CAS  Google Scholar 

  • Mayani HaL, PM. 1998. Biology of Human Umbilical Cord Blood-Derived Hematopoietic Stem/Progenitor Cells. Srem Cells 16:153–165.

    CAS  Google Scholar 

  • McAdams T, Miller, WM. & Papoutsakis, ET. 1996. Hematopoietic cell culture therapies (part I): cell culture considerations. Trends in Biotechnology 14:341–349.

    CrossRef  PubMed  CAS  Google Scholar 

  • McAdams T, Sandstrom, CE., Miller, WM., Bender, JG. and Paputsakis, ET. 1995. Ex vivo expansion of primitive hematopoietic cells for cellular therapies: An overview. Cytotechnology 18:133–146.

    CrossRef  Google Scholar 

  • McAdams TA, Miller WM, Papoutsakis ET. 1997. Variations in culture pH affect the cloning eficiency and differentiation of progenitor cells in ex vivo haematopoiesis. British Journal of Haematology 97:889–895.

    CrossRef  PubMed  CAS  Google Scholar 

  • McAdams TA, Miller WM, Papoutsakis ET. 1998. pH is a potent modulator of erythroid differentiation. British Journal of Haematology 103:317–325.

    CrossRef  PubMed  CAS  Google Scholar 

  • McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL. 1998. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 24:1632–1639.

    Google Scholar 

  • McDowell CL, Papoutsakis ET. 1998. Increased agitation intensity increases CD13 receptor surface content and mRNA levels, and alters the metabolism of HL60 cells cultures in stirred tank bioreactors. Biotechnology & Bioengineering 60:239–250.

    CrossRef  CAS  Google Scholar 

  • McNiece I, Briddell R. 2001. Ex vivo expansion of hematopoietic progenitor cells and mature cells. Experimental Hematology 29:3–11.

    CrossRef  PubMed  CAS  Google Scholar 

  • Meyer C, Drexler HG. 1999. FLT3 ligand inhibits apoptosis and promotes survival of myeloid leukemia cell lines. Leukemia Lymphoma 32:577–581.

    PubMed  CAS  Google Scholar 

  • Mobest D, Goan, S., Junghahn, I., Winkler, J., Fichtner, I., Becker, M., De Lima-Hahn, E., Mertelsmann, R. & Henschler, R. 1999. Differential Kinetics of Primitive Hematopoietic Cells Assayed In Vitro and In Vivo During Serum-Free Suspension Culture of CD34+ Blood Progenitor Cells. Stem Cells 17:152–161.

    PubMed  CAS  Google Scholar 

  • Mobest D, Mertelsmann, R. & Henschler, R. 1998. Serum-Free ex vivo Expansion of CD34+ Hematopoietic Progenitor Cells. Biotechnology and Bioengineering 60(3):341–347.

    CrossRef  PubMed  CAS  Google Scholar 

  • Mostafa S, Miller, WM & Papoutsakis, ET. 2000. Oxygen tension influences the differentiation, maturation and apoptosis of human megakaryocytes. British Journal of Haematology 111:879–889.

    CrossRef  PubMed  CAS  Google Scholar 

  • Naldini A, Carraro, F., Silvestri, S., et al. 1997. Hypoxia Affects Cytokine Production and Proliferation Responses by Human Peripheral Mononuclear Cells. Journal of Cellular Physiology 173:335–342.

    CrossRef  PubMed  CAS  Google Scholar 

  • Naughton BA, Jacob L, Naughton GK. 1990. A three-dimensional culture system for the growth of hematopoietic cells. Progress in Clinical and Biological Research 333:435–445.

    PubMed  CAS  Google Scholar 

  • Naughton BA, Naughton GK. 1989. Hematopoiesis on nylon mesh templates-comparative long-term bone-marrow culture and the influence of stromal support cells. Annals of the New York Academy of Sciences 554:125–140.

    PubMed  CAS  Google Scholar 

  • Naughton BA, Tjota A, Sibanda B, Naughton GK. 1991. Hematopoiesis on suspended nylon screen-stromal cell microenvironments. Journal of Biomechanical Engineering-Transactions of the ASME 113:171–177.

    CAS  Google Scholar 

  • Nielsen LK. 1999. Bioreactors for Hematopoietic Cell Culture. Annual Reviews in Biomedical Engineering 1:129–152.

    CrossRef  CAS  Google Scholar 

  • Noll T, Jelinek, N., Schmidt, S., Biselli, M. & Wandrey, C. 2002. Cultivation of Hematopoietic Stem and Progenitor cells: Biochemical Engineering Aspects. Advances in Biochemical Engineering 74:111–128.

    CAS  Google Scholar 

  • Ogawa M, Clark SC. 1988. Synergistic interaction between interleukin-6 and interleukin-3 in support of stem cell proliferation in culture. Blood Cells 14:329–335.

    PubMed  CAS  Google Scholar 

  • Oh D, Koller, MR. & Palsson, BO. 1994. Frequent Harvesting from Perfused Bone Marrow Cultures Results in in Increased Overall Cell and Progenitor Expansion. Biotechnology and Bioengineering 44:609–616.

    CrossRef  PubMed  CAS  Google Scholar 

  • Ohmizono Y, Sakaba H, Kimura T, Tanimukai S, Matsumura T, Miyazaki H, Lyman SD, Sonoda Y. 1997. Thrombopoietin augments ex vivo expansion of human cord blood-derived hematopoietic progenitors in combination with stem cell factor and flt3 ligand. Leukemia 11:524–530.

    CrossRef  PubMed  CAS  Google Scholar 

  • Osawa M, Hanada K, Hamada H, Nakauchi H. 1996. Long-term lymphohematopoietic reconstitution by CD34-low/negative hematopoietic stem cells. Science 273:242–245.

    PubMed  CAS  Google Scholar 

  • Palsson BO, Paek S-H, Schwartz RM, Palsson MA, Lee G-M, Silver S, Emerson SG. 1993. Expansion of human bone marrow progenitor cells in a high cell density continuous perfusion system. Bio/Technology 11:368–372.

    CrossRef  PubMed  CAS  Google Scholar 

  • Pennathur-Das RL, L. 1987. Augmentation of In Vitro Human Marrow Erythropoiesis Under Physiological Oxygen Tensions Is Mediated by Monocytes and T Lymphocytes. Blood 69(3):899–907.

    PubMed  CAS  Google Scholar 

  • Petzer AL, Zandstra PW, Piret JM, Eaves CJ. 1996. Differential cytokine effects on primitive (CD34+CD38-) human hematopoietic cells: novel responses to flt3-ligand and thrombopoietin. Journal of Experimental Medicine 183:2551–2558.

    CrossRef  PubMed  CAS  Google Scholar 

  • Piacibello W, Sanavio F, Garetto L, Severino A, Dane A, Gammaitoni I, Agglietta M. 1998. Differential growth factor requirement of primitive cord blood hematopoietic stem cells for self-renewal and amplification versus proliferation and differentiation. Leukemia 12:718–727.

    CrossRef  PubMed  CAS  Google Scholar 

  • Pierson BA, Europa AF, Hu WS, Miller JS. 1996. Production of human natural killer cells for adoptive immunotherapy using a computer-controlled stirred-tank bioreactor. Journal of Hematotherapy 5:474–483.

    Google Scholar 

  • Poloni A, Giarratana MC, Kobari L, Firat H, Bouchet S, Gorin NC, Douay L. 1997. The ex vivo expansion capacity of normal human bone marrow cells is dependent on experimental conditions: role of cell concentration, serum and CD34+ cell selection in stroma-free cultures. Hematological Cellular Therapy 39:49–58.

    CrossRef  CAS  Google Scholar 

  • Quesenberry P, Colvin GA. 2001. Hematopoietic stem cells, progenitor cells, and cytokines. In: Seligsohn U, editor. Hematology. New York: McGraw-Hill. p 153–174.

    Google Scholar 

  • Quesenberry P, Crittenden R, Lowry P, Kittler E, Rao S, Peters S, Ramshaw H, Stewart F. 1994. In vitro and in vivo studies of stromal niches. Blood Cells 20:97–106.

    PubMed  CAS  Google Scholar 

  • Rich I. 1986. A Role for the Macrophage in Normal Hemopoiesis. II. Effect of Varying Physiology Oxygen Tensions on the Release of Hemopoietic Growth Factors from Bone-marrow-derived Macrophage in vitro. Experimental Hematology 14:746–751.

    PubMed  CAS  Google Scholar 

  • Rich I, & Kubanek, B. 1982. The effect of reduced oxygen tension on colony formation of erythropoietic cells in vitro. British Journal of Haematology 52:579–588.

    PubMed  CAS  Google Scholar 

  • Rosenzwajg M, Canque B, Gluckman JC. 1996. Human dendritic cell differentiation pathway from CD34+ hematopoietic precursor cells. Blood 87:535–544.

    PubMed  CAS  Google Scholar 

  • Rosenzweig M, Pykett MJ, Marks DF, Johnson RP. 1997. Enhanced maintenance and retroviral transduction of primitive hematopoietic progenitor cells using a novel three-dimensional culture system. Gene Therapy 4:928–936.

    CrossRef  PubMed  CAS  Google Scholar 

  • Rusten LS, Smeland EB, Jacobsen FW, Lien E, Lesslauer W, Loetscher H, Dubois CM, Jacobsen SE. 1994. Tumor necrosis factor-alpha inhibits stem cell factor-induced proliferation of human bone marrow progenitor cells in vitro. Role of p55 and p75 tumor necrosis factor receptors. Journal of Clinical Investigation 94:165–172.

    PubMed  CAS  CrossRef  Google Scholar 

  • Sandstrom CE, Bender JG, Miller ME, Papoutsakis ET. 1996. Development of a novel perfusion chamber to retain nonadherent cells and its use for comparison of human “mobilized” peripheral blood mononuclear cell cultures with and without irradiated bone marrow stroma. Biotechnology & Bioengineering 50:493–504.

    CrossRef  CAS  Google Scholar 

  • Sandstrom CE, Bender JG, Papoutsakis ET, Miller WM. 1995. Effects of CD34+ cell selection and perfusion on ex vivo expansion of peripheral blood mononuclear cells. Blood 86:958–970.

    PubMed  CAS  Google Scholar 

  • Sardonini CA, Wu YJ. 1993. Expansion and differentiation of human hematopoietic cells from static cultures through small-scale bioreactors. Biotechnology Progress 9:131–137.

    CrossRef  PubMed  CAS  Google Scholar 

  • Schwartz R, Palsson B, Emerson S. 1991. Rapid medium perfusion rate significantly increases the productivity and longevity of human bone marrow cultures. Proc. Natl. Acad. Sci. (USA) 88:6760–6764.

    PubMed  CAS  Google Scholar 

  • Shah AJ, Smogorzewska EM, Hannum C, Crooks GM. 1996. Flt3 ligand induces proliferation of quiescent human bone marrow CD34+CD38 cells and maintains progenitor cells in vitro. Blood 87:3563–3570.

    PubMed  CAS  Google Scholar 

  • Shih C-C, DiGiusto D, Forman SJ. 2002. Ex Vivo Expansion of Transplantable Human Hematopoietic Stem Cells: Where Do We Stand in the Year 2000? Journal of Hematotherapy & Stem Cell Research 9:621–628.

    Google Scholar 

  • Spangrude GJ, Johnson GR. 1990. Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proceedings of the National Academy of Sciences USA 87:7433–7477.

    CAS  Google Scholar 

  • Sutherland HJ, Lansdorp PM, Henkelman DH, Eaves AC, Eaves CJ. 1990. Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proceedings of the National Academy of Sciences USA 87:3584–3588.

    CAS  Google Scholar 

  • Tennant G. 2000. Control of pH in human long-term bone marrow cultures with low-glucose medium containing zwitterion buffer lengthens the period of haematopoiesis activity. Brithish Journal of Haematology 109:785–787.

    CrossRef  CAS  Google Scholar 

  • Till JE, McCulloch EA. 1961. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiation Research 14:213–222.

    PubMed  CAS  Google Scholar 

  • Trentin JJ. 1970. Influence of hematopoietic organ stroma (hematopoietic inductive microenvironments) on stem cell differentiation. In: Gordon AS, editor. Regulation of hemopoiesis. New York: Appleton-Century-crofts. p 161–186.

    Google Scholar 

  • Tsukada J, Misago, M., Kikuchi, M., Sato, T., Ogawa, R., Ota, T., Oda, S., Morimoto, I., Chiba, S. & Eto, S. 1992. Interaction between recombinant human erythropoietin and serum factor(s) on murine megakaryocyte colony formation. Blood 80(1):37–45.

    PubMed  CAS  Google Scholar 

  • Veiby OP, Jacobsen FW, Cui L, Lyman SD, Jacobsen SE. 1996. The flt3 ligand promotes the survival of primitive hemopoietic progenitor cells with myeloid as well as B lymphoid potential. Suppression of apoptosis and counteraction by TNF-alpha and TGF-beta. Journal of Immunology 157:2953–2960.

    CAS  Google Scholar 

  • Verfaillie CM. 2001. Ex Vivo Expansion of Hematopoietic Stem Cells. In: Zon LI, editor. Hematopoiesis: A Developmental Approach. New York: Oxford University Press. p 119–129.

    Google Scholar 

  • Verfaillie CM, Hurley R, Bhatia R, McCarthy JB. 1994. MIP-1a combined with IL-3 conserves primitive human LTBMC-IC for at least 8 weeks in ex vivo “stroma-non-contact” cultures. Journal of Experimental Medicine 179:643–649.

    CrossRef  PubMed  CAS  Google Scholar 

  • Wang T-Y, Brennan JK, Wu JHD. 1995. Multilineal hematopoiesis in a three-dimensional murine longterm bone marrow culture. Experimental Hematology 23:26–32.

    PubMed  CAS  Google Scholar 

  • Weissman I. 1994. Developmental switches in the immune system. Cell 76:207–218.

    CrossRef  PubMed  CAS  Google Scholar 

  • Williams DE, Hangoc G, Cooper S, Boswell HS, Shadduck RK, Gillis S, Waheed A, Urdal D, Broxmeyer HE. 1987. The effects of purified recombinant murine interleukin-3 and/or purified natural murine CSF-1 in vivo on the proliferation of murine hifg-and low-proliferative potential colony-forming cells: demonstration of in vivo synergism. Blood 70:401–403.

    PubMed  CAS  Google Scholar 

  • Won JH, Cho SD, Park SK, Lee GT, Baick SH, Suh WS, Hong DS, Park HS. 2000. Thrombopoietin in synergy with other cytokines for expansion of cord blood progenitor cells. Journal of Hematotherapy and Stem Cell Research 9:465–473.

    CrossRef  PubMed  CAS  Google Scholar 

  • Yagi M, Ritchie KA, Sitnicka E, Storey C, Roth GI, Bartelmez S. 1999. Sustained ex vivo expansion of hematopoietic cells mediated by thrombopoietin. Proceedings of the National Academy of Sciences USA 96:8126–8131.

    CrossRef  CAS  Google Scholar 

  • Yamaguchi M, Hiramaya, F., Kanai, M., Sato, N., Fukazawa, K., Yamashita, K., Sawada, K., Koike, T., Kuwabara, M., Ikeda, H. & Ikebuchi, K. 2001. Serum-free coculture system for ex vivo expansion of human cord blood primitive progenitos and SCID mouse-reconstituting cells using human bone marrow primary stromal cells. Experimental Hematology 29:174–182.

    CrossRef  PubMed  CAS  Google Scholar 

  • Yang H, Miller, WM., Papoutsakis, ET. 2002. High pH promotes megakaryocytic maturation and apoptosis. Stem Cells 20:320–328.

    CrossRef  PubMed  CAS  Google Scholar 

  • Zandstra PW, Conneally E, Petzer AL, Piret JM, Eaves CJ. 1997. Cytokine manipulation of primitive human hematopoietic cell self-renewal. Proceedings of the National Academy of Sciences USA 94:4698–4703.

    CrossRef  CAS  Google Scholar 

  • Zandstra PW, Eaves CJ, Piret JM. 1994. Expansion of Hematopoietic Progenitor Cell Populations in Stirred Suspension Bioreactors of Normal Human bone Marrow Cells. Bio/Technology 12:909–914.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Safinia, L., Panoskaltsis, N., Mantalaris, A. (2005). Haematopoietic Culture Systems. In: Chaudhuri, J., Al-Rubeai, M. (eds) Bioreactors for Tissue Engineering. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3741-4_14

Download citation