Skip to main content

Design of Vascular Graft Bioreactors

  • Chapter

Conclusions

The overall aim of vascular bioreactor design and operation is the use of a perfusion system to allow adhesion, growth and proliferation of vascular cells under in vitro conditions that emulate the in vivo physiological environment. There are three key factors to be considered: design of a bioreactor that allows the uniform in situ seeding of specific cells to the required scaffold surfaces; use of an appropriate system to generate mechanical forces and transmit them to the cells in the bioreactor; creation of an bioreactor infrastructure to allow long-term, aseptic culture and monitoring of human primary or stem cells and the developing tissue.

Due to its relative infancy, literature describing the development of vascular bioreactors is limited with little in the way of standardized design. Such reports describe in some detail the perfusion circuits that incorporate the bioreactors, though few describe the vascular bioreactors in detail. Researchers are using unique, non-standardized systems, drawing on what little information is available. A drawback of this lack of standardisation is the inability to draw common conclusions from the different studies because of the design variation. Given that the mechanical environment is a strong determinant of gene expression, differences in design will effect gene expression and thus the performance of the graft as a whole. Clearly there is a need to define the underpinning design parameters and flow characteristics in order to facilitate comparative studies to improve design and integration methodologies.

Keywords

  • Vascular Smooth Muscle Cell
  • Intimal Hyperplasia
  • Bovine Aortic Endothelial Cell
  • Flow Circuit
  • Pulsatile Pressure

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/1-4020-3741-4_12
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-3741-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barron V, Lyons E, Stenson-Cox C, McHugh PE, Pandit A. 2003. Bioreactors for cardiovascular cell and tissue growth: A review. Annals of Biomedical Engineering 31:1017–1030.

    CrossRef  PubMed  CAS  Google Scholar 

  • Best CH, Taylor NB. 1991. Best and Taylors physiological basis of medical practice. B. WJ, editor. Baltimore, MD 21202, USA: Williams and Wilkins.

    Google Scholar 

  • Birukov KG, Shirinsky VP, Stepanova OV, Tkachuk VA, Hahn AWA, Resink TJ, Smirnov VN. 1995. Stretch effects phenotype and proliferation of vascular smooth muscle cells. Molecular and cellular biochemistry 144: 131–139.

    CrossRef  PubMed  CAS  Google Scholar 

  • Bissell MJ, Barcellos-Hoff MH. 1987. The influence of extracellular matrix on gene expression: is structure the message? J Cell Sci Suppl 8:327–43.

    PubMed  CAS  Google Scholar 

  • Costa KA, Sumpio BE, Cerreta JM. 1991. Increased elastin synthesis by bovine aortic smooth muscle cells subjected to repetitive mechanical stretching. FASEB J. 5(A 1069).

    Google Scholar 

  • Davies PF. 2002. Spatial structural and genomic responces of endothelial cells to hemodynamic shear stress. Cardiovascular Pathology 11:25.

    Google Scholar 

  • Dobrin PB, Littooy FN, Endean ED. 1989. Mechanical factors predisposing to intimal hyperplasia and medial thickening in autogenous vein grafts. Surgery 105(3):393–400.

    PubMed  CAS  Google Scholar 

  • Greisler HP, Petsikas D, Lam TM, Patel NE, Cabusao E, al. e. 1993. Kinetic of cell proliferation as a function of vascular graft material. Journal of Biomedical Materials Research 27:955–961.

    CrossRef  PubMed  CAS  Google Scholar 

  • Hoerstrup SP, Zund G, Sodian R, Schnell AM, Grunenfelder J, Turina MI. 2001. Tissue engineering of small caliber vascular grafts. European Journal of Cardiothoracic Surgery 20(1):164–169.

    CrossRef  PubMed  CAS  Google Scholar 

  • Ives CL, Eskin SG, McIntire LV. 1986. Mechanical efects on endothelial cell biology. In vitro Cell Developmental Biology 22:500–507.

    CAS  Google Scholar 

  • Jones GE. 1996. Methods in Molecular Medicine. Walker JM, editor. Towowa: Humana Press. 545 p.

    Google Scholar 

  • Kaiser D, Freyberg MA, Freiedl P. 1997. Lack of haemodynamic forces trigger apoptosis in vascular endothelial cells. Biochemical and Biophysical Research Communications 231:596–590.

    CrossRef  Google Scholar 

  • Kim B, Mooney D. 1998. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends in Biotechnology 16(5):224–230.

    CrossRef  PubMed  CAS  Google Scholar 

  • Kim BS, Nikoloviski J, Bonadio J, Mooney DJ. 1999. Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nature Biotechnology 17(October):979–983.

    Google Scholar 

  • Lehoux S, Tedgui A. 2003. Cellular mechanics and gene expression in blood vessels. J Biomech 36(5): 631–43.

    CrossRef  PubMed  Google Scholar 

  • L’Heureux N, Germain L, Labbe R, Auger FA. 1993. In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study. Journal of Vascular Surgery 17:499–509.

    CrossRef  PubMed  CAS  Google Scholar 

  • L’Heureux N, Paquet S, Labbe R, Germain L, Auger FA. 1998. A completely biological tissue-engineered human blood vessel. FASEB Journal 12(1):47–56.

    PubMed  CAS  Google Scholar 

  • Ma Y-H, Ling S, Ives HE. 1999. Mechanical strain increases PDGF-B and PDGF-beta receptor expression in vascular smooth muscle cells. Biochemical and Biophysical Research Communications 265:606–610.

    CrossRef  PubMed  CAS  Google Scholar 

  • McFetridge PS. 2002. The Use of Porcine Carotid Arteries as a Matrix Material for Tissue Engineered Small Diameter Vascular Grafts [PhD]. Bath: University of Bath. 301 p.

    Google Scholar 

  • Nerem RM. 2000. Tissue engineering a blood vessel substitute: the role of biomechanics. Yonsei Med J 41(6):735–9.

    PubMed  CAS  Google Scholar 

  • Nerem RM, Alexander WR, Chappell DC, Medford RM, Varner SE, Taylor RW. 1998. The study of the influence of flow on vascular endothelial biology. Americal Journal of Medical Science 316(3):169–175.

    CrossRef  CAS  Google Scholar 

  • Nerem RM, Harrison DG, Taylor RW, Alexander WR. 1993. Haemodynamics and vascular endothelial biology. Journal of Cardiovascular Pharmacology 21(supplement 1):S6–S10.

    PubMed  CAS  Google Scholar 

  • Nerem RM, Seliktar D. 2001. Vascular Tissue Engineering. Annual Review of Biomedical Engineering 3: 225–243.

    CrossRef  PubMed  CAS  Google Scholar 

  • Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R. 1999. Functional arteries grown in vitro. Science 284:489–493.

    CrossRef  PubMed  CAS  Google Scholar 

  • Niklason LE, Gao J, Abbott WM, Klagges B, Hirschi KK, Ulubayram K, Conroy N, Jones R, Vasanawala A, Sanzgiri S and others. 2001. Morphologic and mechanical charactistics of engineered bovine arteries. Journal of Vascular Surgery 33:628–638.

    CrossRef  PubMed  CAS  Google Scholar 

  • Perry RH, Green DW. 1998. Perry’s Chemical Engineers Handbook: McGraw-Hill International Editions, Chemical Engineering Series.

    Google Scholar 

  • Schmidt CE, Baier JM. 2000. Acellular vascular tissues: natural biomaterials for tisue repair and tissue engineering. Biomaterials 21:2215–2231.

    CrossRef  PubMed  CAS  Google Scholar 

  • Seliktar D, Black RA, Vito RP, Nerem RM. 2000. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann Biomed Eng 28(4):351–62.

    CrossRef  PubMed  CAS  Google Scholar 

  • Shinoka T, Ma PX, Shum-Tim D, Breur CR, Cusick RA, Zund G, Langer R, Vacanti JP, Mayer JE. 1997. Tissue-engineered heart valves: autologous valve leaflet replacement, study in a lamb model. Circulation (Supplement II) 96(9):164–168.

    Google Scholar 

  • Solan A, Mitchell S, Moses M, Niklason L. 2003. Effect of pulse rate on collagen deposition in the tissue-engineered blood vessel. Tissue Engineering 9(4):579–586.

    CrossRef  PubMed  CAS  Google Scholar 

  • Stegemann JP, Nerem RM. 2003. Phenotype modulation in vascular tissue engineering using biochemical and mechanical stimulation. Annals of Biomedical Engineering 31:391–402.

    CrossRef  PubMed  Google Scholar 

  • Streuli C. 1999. Extracellular matrix remodelling and cellular differentiation. Curr Opin Cell Biol 11(5):634–40.

    CrossRef  PubMed  CAS  Google Scholar 

  • Sumpio BE. 1993. Haemodynamic forces and vascular cell biology. Sumpio BE, editor. Georgetown: R.G. Landes Company.

    Google Scholar 

  • Thoumine O, Ziegler T, Girard PR, Nerem RM. 1995. Elongation of confluent endothelial cells in culture: The importance of fields of force in the associated alterations of their cytoskeletal structure. Experimental Cell Reseaarch 219:427–441.

    CrossRef  CAS  Google Scholar 

  • Vunjak-Novakovic G. 2002. Tissue engineering approach to functional myocardium. Cardiovascular Pathology 11:23.

    Google Scholar 

  • Weinberg CB, Bell E. 1986. A blood vessel model constructed from collagen and cultured vascular cells. Science 231(4736):397–400.

    PubMed  CAS  Google Scholar 

  • Zilla PP, Greisler HP, editors. 1999. Tissue Engineering of Vascular Prosthetic Grafts. Austin: R.G. Landes Company.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Mcfetridge, P., Chaudhuri, J. (2005). Design of Vascular Graft Bioreactors. In: Chaudhuri, J., Al-Rubeai, M. (eds) Bioreactors for Tissue Engineering. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3741-4_12

Download citation