Skip to main content

Biomechanical Considerations for Tissue Engineered Heart Valve Bioreactors

  • Chapter

Keywords

  • Aortic Valve
  • Heart Valve
  • Effective Stiffness
  • Aortic Valve Cusp
  • Equibiaxial Tension

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/1-4020-3741-4_11
  • Chapter length: 33 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-3741-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal CM, McKinney JS, Lanctot D, Athanasiou KA. 2000. Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering. Biomaterials 21(23):2443–52.

    CrossRef  PubMed  CAS  Google Scholar 

  • Billiar KL, Sacks MS. 2000. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—Part I: Experimental results. J Biomech Eng 122(1):23–30.

    CrossRef  PubMed  CAS  Google Scholar 

  • Broom N, Christie GW. 1982. The Structure/Function Relationship of Fresh and Gluteraldehyde-Fixed Aortic Valve Leaflets. In: Gallucci V, editor. Cardiac Bioprosthesis. New York: Yorke Medical Books. p 477–491.

    Google Scholar 

  • Brossollet LJ, Vito RP. 1995. An alternate formulation of blood vessel mechanics and the meaning of the in vivo property. J Biomech 28(6):679–87.

    CrossRef  PubMed  CAS  Google Scholar 

  • Cacou C, Palmer D, Lee DA, Bader DL, Shelton JC. 2000. A system for monitoring the response of uniaxial strain on cell seeded collagen gels. Med Eng Phys 22(5):327–33.

    CrossRef  PubMed  CAS  Google Scholar 

  • Choi HS, Vito RP. 1990. Two-dimensional stress-strain relationship for canine pericardium. J Biomech Eng 112(2):153–9.

    PubMed  CAS  Google Scholar 

  • Christie GW. 1992. Anatomy of aortic heart valve leaflets: the influence of glutaraldehyde fixation on function. European Journal of Cardio-Thoracic Surgery 6:S25–S33.

    CrossRef  PubMed  Google Scholar 

  • Donovan FM, Jr. 1975. Design of a hydraulic analog of the circulatory system for evaluating artificial hearts. Biomater Med Devices Artif Organs 3(4):439–49.

    PubMed  Google Scholar 

  • Dumont K, Yperman J, Verbeken E, Segers P, Meuris B, Vandenberghe S, Flameng W, Verdonck PR. 2002. Design of a new pulsatile bioreactor for tissue engineered aortic heart valve formation. Artif Organs 26(8):710–4.

    CrossRef  PubMed  Google Scholar 

  • Frisch-Fay R. 1962. Flexible bars. Washington,DC: Butterworths. 220 p.

    Google Scholar 

  • Gloeckner DC, Billiar KL, Sacks MS. 1999. Effects of mechanical fatigue on the bending properties of the porcine bioprosthetic heart valve. Asaio J 45(1):59–63.

    PubMed  CAS  Google Scholar 

  • Hoerstrup SP, Sodian R, Daebritz S, Wang J, Bacha EA, Martin DP, Moran AM, Guleserian KJ, Sperling JS, Kaushal S and others. 2000a. Functional living trileaflet heart valves grown In vitro. Circulation 102(19 Suppl 3):III44–9.

    PubMed  CAS  Google Scholar 

  • Hoerstrup SP, Sodian R, Sperling JS, Vacanti JP, Mayer JE, Jr. 2000b. New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Eng 6(1):75–9.

    CrossRef  PubMed  CAS  Google Scholar 

  • Hoerstrup SP, Zund G, Schoeberlein A, Ye Q, Vogt PR, Turina MI. 1998. Fluorescence activated cell sorting: a reliable method in tissue engineering of a bioprosthetic heart valve. Ann Thorac Surg 66(5):1653–7.

    CrossRef  PubMed  CAS  Google Scholar 

  • Hoerstrup SP, Zund G, Ye Q, Schoeberlein A, Schmid AC, Turina MI. 1999. Tissue engineering of a bioprosthetic heart valve: stimulation of extracellular matrix assessed by hydroxyproline assay. Asaio J 45(5): 397–402.

    PubMed  CAS  Google Scholar 

  • Humphrey JD, Strumpf RK, Yin FC. 1990. Determination of a constitutive relation for passive myocardium: II. Parameter estimation. J Biomech Eng 112(3):340–6.

    PubMed  CAS  Google Scholar 

  • Iyengar A, Sugimoto H, Smith B, Sacks M. 2001. Dynamic in-vitro 3D reconstruction of heart valve leaflets using structured light projection. Annals of Biomedical Engineering 29:963–973.

    CrossRef  PubMed  Google Scholar 

  • Jockenhoevel S, Zund G, Hoerstrup SP, Schnell A, Turina M. 2002. Cardiovascular tissue engineering: a new laminar flow chamber for in vitro improvement of mechanical tissue properties. Asaio J 48(1):8–11.

    CrossRef  PubMed  Google Scholar 

  • Kim BS, Mooney DJ. 2000. Scaffolds for engineering smooth muscle under cyclic mechanical strain conditions. J Biomech Eng 122(3):210–5.

    CrossRef  PubMed  CAS  Google Scholar 

  • Lanir Y. 1979. A Structural Theory for the Homogeneous Biaxial Stress-Strain Relationships in Flat Collageneous Tissues. Journal of Biomechanics 12:423–436.

    CrossRef  PubMed  CAS  Google Scholar 

  • Lanir Y. 1983. Constitutive Equations for Fibrous Connective Tissues. journal of biomechanics 16:1–12.

    CrossRef  PubMed  CAS  Google Scholar 

  • Lee JM, Boughner DR, Courtman DW. 1984. The glutaraldehyde-stabilized porcine aortic valve xenograft. II. Effect of fixation with or without pressure on the tensile viscoelastic properties of the leaflet material. Journal of Biomedical Materials Research 18:79–98.

    CrossRef  PubMed  CAS  Google Scholar 

  • Mayne AS, Christie GW, Smaill BH, Hunter PJ, Barratt-Boyes BG. 1989. An assessment of the mechanical properties of leaflets from four second-generation porcine bioprostheses with biaxial testing techniques. J Thorac Cardiovasc Surg 98(2):170–80.

    PubMed  CAS  Google Scholar 

  • May-Newman K, Yin FC. 1998. A constitutive law for mitral valve tissue. J Biomech Eng 120(1):38–47.

    PubMed  CAS  Google Scholar 

  • Mitchell SB, Sanders JE, Garbini JL, Schuessler PK. 2001. A device to apply user-specified strains to biomaterials in culture. IEEE Trans Biomed Eng 48(2):268–73.

    CrossRef  PubMed  CAS  Google Scholar 

  • Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R. 1999. Functional arteries grown in vitro. Science 284(5413):489–93.

    CrossRef  PubMed  CAS  Google Scholar 

  • Sacks MS, Chuong CJ. 1998. Orthotropic mechanical properties of chemically treated bovine pericardium. Ann Biomed Eng 26(5):892–902.

    CrossRef  PubMed  CAS  Google Scholar 

  • Sacks MS, Sun W. 2003. Multiaxial Mechanical Behavior of Biological Materials. Annu Rev Biomed Eng.

    Google Scholar 

  • Schoen F, Levy R. 1999. Tissue heart valves: Current challenges and future research perspectives. Journal of Biomedical Materials Research 47:439–465.

    CrossRef  PubMed  CAS  Google Scholar 

  • Schoen FJ. 2001. Pathology of heart valve substitution with mechanical and tissue prostheses. In: Schoen FJ, editor. Cardiovascular Pathology. New York: Livingstone.

    Google Scholar 

  • Seliktar D, Black RA, Vito RP, Nerem RM. 2000. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann Biomed Eng 28(4):351–62.

    CrossRef  PubMed  CAS  Google Scholar 

  • Seliktar D, Nerem RM, Galis ZS. 2001. The role of matrix metalloproteinase-2 in the remodeling of cell-seeded vascular constructs subjected to cyclic strain. Ann Biomed Eng 29(11):923–34.

    CrossRef  PubMed  CAS  Google Scholar 

  • Sodian R, Hoerstrup SP, Sperling JS, Daebritz SH, Martin DP, Schoen FJ, Vacanti JP, Mayer JE, Jr. 2000. Tissue engineering of heart valves: in vitro experiences. Ann Thorac Surg 70(1):140–4.

    CrossRef  PubMed  CAS  Google Scholar 

  • Sodian R, Lemke T, Loebe M, Hoerstrup SP, Potapov EV, Hausmann H, Meyer R, Hetzer R. 2001. New pulsatile bioreactor for fabrication of tissue-engineered patches. J Biomed Mater Res 58(4):401–5.

    CrossRef  PubMed  CAS  Google Scholar 

  • Sodian R, Sperling JS, Martin DP, Stock U, Mayer JE, Jr., Vacanti JP. 1999. Tissue engineering of a trileaflet heart valve-early in vitro experiences with a combined polymer. Tissue Eng 5(5):489–94.

    PubMed  CAS  Google Scholar 

  • Stock UA, Sakamoto T, Hatsuoka S, Martin DP, Nagashima M, Moran AM, Moses MA, Khalil PN, Schoen FJ, Vacanti JP and others. 2000. Patch augmentation of the pulmonary artery with bioabsorbable polymers and autologous cell seeding [In Process Citation]. J Thorac Cardiovasc Surg 120(6):1158–67.

    CrossRef  PubMed  CAS  Google Scholar 

  • Stock UA, Vacanti JP, Mayer Jr JE, Wahlers T. 2002. Tissue engineering of heart valves — current aspects. Thorac Cardiovasc Surg 50(3):184–93.

    CrossRef  PubMed  CAS  Google Scholar 

  • Struik DJ. 1961. Lectures on Classical Differential Geometry. New York: Dover. 232 p.

    Google Scholar 

  • Thompson DE, Agrawal CM, Athanasiou KA. 1996. The Effects of Dynamic Compressive Loading on Biodegradable Implants of 50-50% Polylactic Acid-Polyglycolic Acid. Tissue Eng 2(1):61–74.

    CAS  Google Scholar 

  • Turina J, Hess OM, Turina M, Krayenbuehl HP. 1993. Cardiac bioprostheses in the 1990s. Circulation 88(2):775–81.

    PubMed  CAS  Google Scholar 

  • Vandenberghe S, Segers P, Meyns B, Verdonck P. 2001. Hydrodynamic characterisation of ventricular assist devices. Int J Artif Organs 24(7):470–7.

    PubMed  CAS  Google Scholar 

  • Verdonck P, Kleven A, Verhoeven R, Angelsen B, Vandenbogaerde J. 1992. Computer-controlled in vitro model of the human left heart. Med Biol Eng Comput 30(6):656–9.

    PubMed  CAS  Google Scholar 

  • Vesely I, Boughner D. 1989. Analysis of the bending behaviour of porcine xenograft leaflets and of natural aortic valve material: bending stiffness, neutral axis and shear measurements. Journal of Biomechanics 22(6/7): 655–671.

    CrossRef  PubMed  CAS  Google Scholar 

  • Vesely I, Noseworthy R. 1992. Micromechanics of the fibrosa and the ventricularis in aortic valve leaflets. Journal of Biomechanics 25(1):101–113.

    CrossRef  PubMed  CAS  Google Scholar 

  • Zeltinger J, Landeen LK, Alexander HG, Kidd ID, Sibanda B. 2001. Development and characterization of tissue-engineered aortic valves. Tissue Eng 7(1):9–22.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Sacks, M., Engelmayr, G., Hildebrand, D., Mayer, J. (2005). Biomechanical Considerations for Tissue Engineered Heart Valve Bioreactors. In: Chaudhuri, J., Al-Rubeai, M. (eds) Bioreactors for Tissue Engineering. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3741-4_11

Download citation