Skip to main content

Bioreactors for Ligament Engineering

  • Chapter

Keywords

  • Anterior Cruciate Ligament
  • Anterior Cruciate Ligament Reconstruction
  • Soccer Player
  • Posterolateral Bundle
  • Tendon Fibroblast

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/1-4020-3741-4_10
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-3741-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal S, Long P, Seyedain A, Piesco N, Shree A, Gassner R. 2003. A central role for the nuclear factor-kappaB pathway in anti-inflammatory and proinflammatory actions of mechanical strain. Faseb J 17(8): 899–901.

    PubMed  CAS  Google Scholar 

  • Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL. 2002a. Cell differentiation by mechanical stress. Faseb J 16(2):270–2.

    PubMed  CAS  Google Scholar 

  • Altman GH, Lu HH, Horan RL, Calabro T, Ryder D, Kaplan DL, Stark P, Martin I, Richmond JC, Vunjak-Novakovic G. 2002b. Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering. J Biomech Eng 124(6):742–9.

    CrossRef  PubMed  Google Scholar 

  • Anderson AF, Dome DC, Gautam S, Awh MH, Rennirt GW. 2001. Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. Am J Sports Med 29(1):58–66.

    PubMed  CAS  Google Scholar 

  • Archambault JM, Elfervig-Wall MK, Tsuzaki M, Herzog W, Banes AJ. 2002. Rabbit tendon cells produce MMP-3 in response to fluid flow without significant calcium transients. J Biomech 35(3):303–9.

    CrossRef  PubMed  Google Scholar 

  • Barber FA. 2003. Should allografts be used for routine anterior cruciate ligament reconstructions? Arthroscopy 19(4):421.

    PubMed  CrossRef  Google Scholar 

  • Benjamin M, Ralphs JR. 1998. Fibrocartilage in tendons and ligaments—an adaptation to compressive load. J Anat 193 ( Pt 4):481–94.

    CrossRef  PubMed  Google Scholar 

  • Butler DL, Goldstein SA, Guilak F. 2000. Functional tissue engineering: the role of biomechanics. J Biomech Eng 122(6):570–5.

    CrossRef  PubMed  CAS  Google Scholar 

  • Cabaud HE, Chatty A, Gildengorin V, Feltman RJ. 1980. Exercise effects on the strength of the rat anterior cruciate ligament. Am J Sports Med 8(2):79–86.

    PubMed  CAS  Google Scholar 

  • Calve S, Dennis RG, Kosnik PE, 2nd, Baar K, Grosh K, Arruda EM. 2004. Engineering of functional tendon. Tissue Eng 10(5-6):755–61.

    CrossRef  PubMed  Google Scholar 

  • Carter DR, Beaupre GS, Giori NJ, Helms JA. 1998. Mechanobiology of skeletal regeneration. Clin Orthop (355 Suppl):S41–55.

    Google Scholar 

  • Chen J, Altman GH, Karageorgiou V, Horan R, Collette A, Volloch V, Colabro T, Kaplan DL. 2003. Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A 67(2): 559–70.

    CrossRef  PubMed  CAS  Google Scholar 

  • Chiquet M, Renedo AS, Huber F, Fluck M. 2003. How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biol 22(1):73–80.

    CrossRef  PubMed  CAS  Google Scholar 

  • Cho SW, Kim IK, Lim SH, Kim DI, Kang SW, Kim SH, Kim YH, Lee EY, Choi CY, Kim BS. 2004. Smooth muscle-like tissues engineered with bone marrow stromal cells. Biomaterials 25(15):2979–86.

    CrossRef  PubMed  CAS  Google Scholar 

  • Clark JM, Sidles JA. 1990. The interrelation of fiber bundles in the anterior cruciate ligament. J Orthop Res 8(2):180–8.

    CrossRef  PubMed  CAS  Google Scholar 

  • Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT. 2005. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26(13):1523–32.

    CrossRef  PubMed  CAS  Google Scholar 

  • Dopirak RM, Adamany DC, Steensen RN. 2004. A comparison of autogenous patellar tendon and hamstring tendon grafts for anterior cruciate ligament reconstruction. Orthopedics 27(8):837–42; quiz 843-4.

    PubMed  Google Scholar 

  • Feller J. 2004. Anterior cruciate ligament rupture: is osteoarthritis inevitable? Br J Sports Med 38(4):383–4.

    CrossRef  PubMed  CAS  Google Scholar 

  • Fermor B, Urban J, Murray D, Pocock A, Lim E, Francis M, Gage J. 1998. Proliferation and collagen synthesis of human anterior cruciate ligament cells in vitro: effects of ascorbate-2-phosphate, dexamethasone and oxygen tension. Cell Biol Int 22(9-10):635–40.

    CrossRef  PubMed  CAS  Google Scholar 

  • Frank C, Amiel D, Woo SL, Akeson W. 1985. Normal ligament properties and ligament healing. Clin Orthop (196):15–25.

    Google Scholar 

  • Fu FH, Bennett CH, Lattermann C, Ma CB. 1999. Current trends in anterior cruciate ligament reconstruction. Part 1: Biology and biomechanics of reconstruction. Am J Sports Med 27(6):821–30.

    PubMed  CAS  Google Scholar 

  • Fu FH, Bennett CH, Ma CB, Menetrey J, Lattermann C. 2000. Current trends in anterior cruciate ligament reconstruction. Part II. Operative procedures and clinical correlations. Am J Sports Med 28(1):124–30.

    PubMed  CAS  Google Scholar 

  • Garvin J, Qi J, Maloney M, Banes AJ. 2003. Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng 9(5):967–79.

    CrossRef  PubMed  CAS  Google Scholar 

  • Goulet F, Rancourt D, Cloutier R, Germain L, Poole AR, Auger FA. 2000. Tendons and ligaments. In: Lanza RP, Langer R, Vacanti J, editors. Principles of Tissue Engineering. 2nd ed: Academic Press.

    Google Scholar 

  • Howard PS, Kucich U, Taliwal R, Korostoff JM. 1998. Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts. J Periodontal Res 33(8):500–8.

    PubMed  CAS  Google Scholar 

  • Hsieh AH, Tsai CM, Ma QJ, Lin T, Banes AJ, Villarreal FJ, Akeson WH, Sung KL. 2000. Time-dependent increases in type-III collagen gene expression in medical collateral ligament fibroblasts under cyclic strains. J Orthop Res 18(2):220–7.

    CrossRef  PubMed  CAS  Google Scholar 

  • Huang D, Chang TR, Aggarwal A, Lee RC, Ehrlich HP. 1993. Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices. Ann Biomed Eng 21(3):289–305.

    CrossRef  PubMed  CAS  Google Scholar 

  • Huh YH, Kim SH, Kim SJ, Chun JS. 2003. Differentiation status-dependent regulation of cyclooxygenase-2 expression and prostaglandin E2 production by epidermal growth factor via mitogen-activated protein kinase in articular chondrocytes. J Biol Chem 278(11):9691–7.

    CrossRef  PubMed  CAS  Google Scholar 

  • Johnson DH. 2003. Should allografts be used for routine anterior cruciate ligament reconstructions? No, allografts should not be used for routine ACL reconstruction. Arthroscopy 19(4):424–5.

    PubMed  Google Scholar 

  • Kastelic J, Galeski A, Baer E. 1978. The multicomposite structure of tendon. Connect Tissue Res 6(1): 11–23.

    PubMed  CAS  CrossRef  Google Scholar 

  • Kim SG, Akaike T, Sasagaw T, Atomi Y, Kurosawa H. 2002. Gene expression of type I and type III collagen by mechanical stretch in anterior cruciate ligament cells. Cell Struct Funct 27(3):139–44.

    CrossRef  PubMed  CAS  Google Scholar 

  • Langberg H, Skovgaard D, Bulow J, Kjaer M. 1999. Negative interstitial pressure in the peritendinous region during exercise. J Appl Physiol 87(3):999–1002.

    PubMed  CAS  Google Scholar 

  • Langelier E, Rancourt D, Bouchard S, Lord C, Stevens PP, Germain L, Auger FA. 1999. Cyclic traction machine for long-term culture of fibroblast-populated collagen gels. Ann Biomed Eng 27(1):67–72.

    CrossRef  PubMed  CAS  Google Scholar 

  • Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, Shin JW. 2005. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26(11):1261–70.

    CrossRef  PubMed  CAS  Google Scholar 

  • Lindholt JS, Heickendorff L, Vammen S, Fasting H, Henneberg EW. 2001. Five-year results of elastin and collagen markers as predictive tools in the management of small abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 21(3):235–40.

    CrossRef  PubMed  CAS  Google Scholar 

  • Lohmander LS, Ostenberg A, Englund M, Roos H. 2004. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 50(10):3145–52.

    CrossRef  PubMed  CAS  Google Scholar 

  • McGuire DA. 2003. Should allografts be used for routine anterior cruciate ligament reconstructions? Yes, allografts should be used in routine ACL reconstruction. Arthroscopy 19(4):421–4.

    PubMed  Google Scholar 

  • Murray AW, Macnicol MF. 2004. 10-16 year results of Leeds-Keio anterior cruciate ligament reconstruction. Knee 11(1):9–14.

    CrossRef  PubMed  Google Scholar 

  • Murray MM, Spector M. 1999. Fibroblast distribution in the anteromedial bundle of the human anterior cruciate ligament: the presence of alpha-smooth muscle actin-positive cells. J Orthop Res 17(1):18–27.

    CrossRef  PubMed  CAS  Google Scholar 

  • Nomura E, Inoue M, Sugiura H. 2005. Histological evaluation of medial patellofemoral ligament reconstructed using the Leeds-Keio ligament prosthesis. Biomaterials 26(15):2663–70.

    CrossRef  PubMed  CAS  Google Scholar 

  • Noyes FR, Grood ES. 1976. The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J Bone Joint Surg Am 58(8):1074–82.

    PubMed  CAS  Google Scholar 

  • Orum O, Hansen M, Jensen CH, Sorensen HA, Jensen LB, Horslev-Petersen K, Teisner B. 1996. Procollagen type I N-terminal propeptide (PINP) as an indicator of type I collagen metabolism: ELISA development, reference interval, and hypovitaminosis D induced hyperparathyroidism. Bone 19(2):157–63.

    CrossRef  PubMed  CAS  Google Scholar 

  • Pei M, Solchaga LA, Seidel J, Zeng L, Vunjak-Novakovic G, Caplan AI, Freed LE. 2002. Bioreactors mediate the effectiveness of tissue engineering scaffolds. Faseb J 16(12):1691–4.

    PubMed  CAS  Google Scholar 

  • Peperzak KA, Gilbert TW, Wang JH. 2004. A multi-station dynamic-culture force monitor system to study cell mechanobiology. Med Eng Phys 26(4):355–8.

    CrossRef  PubMed  Google Scholar 

  • Prockop DJ, Kivirikko KI. 1995. Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64:403–34.

    CrossRef  PubMed  CAS  Google Scholar 

  • Sakane M, Fox RJ, Woo SL, Livesay GA, Li G, Fu FH. 1997. In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. J Orthop Res 15(2):285–93.

    CrossRef  PubMed  CAS  Google Scholar 

  • Sakuma K, Mizuta H, Takagi K, Takashima K. 1992. Effects of enforced exercise on biomechanical properties of the anterior cruciate ligament of bipedal rats. Nippon Seikeigeka Gakkai Zasshi 66(11):1146–55.

    PubMed  CAS  Google Scholar 

  • Screen HR, Lee DA, Bader DL, Shelton JC. 2003. Development of a technique to determine strains in tendons using the cell nuclei. Biorheology 40(1-3):361–8.

    PubMed  CAS  Google Scholar 

  • Silver FH, Freeman JW, Seehra GP. 2003. Collagen self-assembly and the development of tendon mechanical properties. J Biomech 36(10):1529–53.

    CrossRef  PubMed  Google Scholar 

  • Smith BA, Livesay GA, Woo SL. 1993. Biology and biomechanics of the anterior cruciate ligament. Clin Sports Med 12(4):637–70.

    PubMed  CAS  Google Scholar 

  • Snell RS. 2000. Clinical anatomy for medical students: Lippincott Williams & Wilkins.

    Google Scholar 

  • Spindler KP, Kuhn JE, Freedman KB, Matthews CE, Dittus RS, Harrell FE, Jr. 2004. Anterior cruciate ligament reconstruction autograft choice: bone-tendon-bone versus hamstring: does it really matter? A systematic review. Am J Sports Med 32(8):1986–95.

    CrossRef  PubMed  Google Scholar 

  • Takai S, Woo SL, Livesay GA, Adams DJ, Fu FH. 1993. Determination of the in situ loads on the human anterior cruciate ligament. J Orthop Res 11(5):686–95.

    CrossRef  PubMed  CAS  Google Scholar 

  • Von Porat A, Roos EM, Roos H. 2004. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Br J Sports Med 38(3):263.

    Google Scholar 

  • Weitzel PP, Richmond JC, Altman GH, Calabro T, Kaplan DL. 2002. Future direction of the treatment of ACL ruptures. Orthop Clin North Am 33(4):653–61.

    CrossRef  PubMed  Google Scholar 

  • Woo SL, Adams DJ. 1990. The tensile properties of human anterior cruciate ligament (ACL) and ACL graft tissues. In: Daniel D, Akeson W, O’Connor J, editors. Knee Ligaments: Structure, Function, Injury, and Repair: Lippincott Williams and Wilkins.

    Google Scholar 

  • Woo SL, Danto MI, Ohland KJ, Lee TQ, Newton PO. 1990. The use of a laser micrometer system to determine the cross-sectional shape and area of ligaments: a comparative study with two existing methods. J Biomech Eng 112(4):426–31.

    PubMed  CAS  Google Scholar 

  • Woo SL, Hollis JM, Adams DJ, Lyon RM, Takai S. 1991. Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med 19(3):217–25.

    PubMed  CAS  Google Scholar 

  • Woo SL, Thomas M, Chan Saw SS. 2004. Contribution of biomechanics, orthopaedics and rehabilitation: the past present and future. Surgeon 2(3):125–36.

    PubMed  CAS  CrossRef  Google Scholar 

  • Wren TA, Beaupre GS, Carter DR. 2000. Mechanobiology of tendon adaptation to compressive loading through fibrocartilaginous metaplasia. J Rehabil Res Dev 37(2):135–43.

    PubMed  CAS  Google Scholar 

  • Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL. 2002. Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30(5):660–6.

    PubMed  Google Scholar 

  • Yahia LH, Desrosiers EA, Rivard CH. 1991. A computer-controlled apparatus for in vitro mechanical stimulation and characterization of ligaments. Biomed Mater Eng 1(4):215–22.

    PubMed  CAS  Google Scholar 

  • Yamamoto E, Hayashi K, Yamamoto N. 1999. Mechanical properties of collagen fascicles from stress-shielded patellar tendons in the rabbit. Clin Biomech (Bristol, Avon) 14(6):418–25.

    CrossRef  CAS  Google Scholar 

  • Yamamoto Y, Hsu WH, Woo SL, Van Scyoc AH, Takakura Y, Debski RE. 2004. Knee stability and graft function after anterior cruciate ligament reconstruction: a comparison of a lateral and an anatomical femoral tunnel placement. Am J Sports Med 32(8):1825–32.

    CrossRef  PubMed  Google Scholar 

  • Yang S, Leong KF, Du Z, Chua CK. 2001. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7(6):679–89.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Ainsworth, B.J., Chaudhuri, J.B. (2005). Bioreactors for Ligament Engineering. In: Chaudhuri, J., Al-Rubeai, M. (eds) Bioreactors for Tissue Engineering. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3741-4_10

Download citation