Skip to main content

An update of work published on Lotus japonicus

  • Chapter
  • 1760 Accesses

Abstract

The following selection of Lotus japonicus literature is arranged in chronological order to provide historical context.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Márquez AJ, Orea A, Pajuelo P, Pajuelo E, Romero JM, Arcondéguy T, Betti M, García-Calderón M, Estivill G, and Pal’ove-Balang P. (2004) Nitrogen assimilation in roots of the model legume Lotus japonicus. Biologia, Bratislava, 59/Suppl. 13, 69–76.

    Google Scholar 

  • Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Allan Downie J, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu GJ, Kawaguchi M, Kawasaki S, Parniske M, and Hayashi M. (2004) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature (Epub 2004 Dec 22).

    Google Scholar 

  • Hakozaki H, Endo M, Masuko H, Park JI, Ito H, Uchida M, Kamada M, Takahashi H, Higashitani A, and Watanabe M. (2004) Cloning and expression pattern of a novel microspore-specific gene encoding hypersensitive-induced response protein (LjHIR1) from the model legume, Lotus japonicus. Genes & Genetic Systems 79, 307–310.

    Article  CAS  Google Scholar 

  • Flemetakis E, Efrose RC, Desbrosses G, Dimou M, Delis C, Aivalakis G, Udvardi MK, and Katinakis P. (2004) Induction and Spatial Organization of Polyamine Biosynthesis During Nodule Development in Lotus japonicus. Molecular Plant-Microbe Interactions 17, 1283–1293.

    CAS  PubMed  Google Scholar 

  • Choi HK, Mun JH, Kim DJ, Zhu HY, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, and Cook DR. (2004) Estimating genome conservation between crop and model legume species. Proceeding of the National Academy of Sciences of the United States of America 101, 15289–15294.

    CAS  Google Scholar 

  • Suganuma N, Yamamoto A, Itou A, Hakoyama T, Banba M, Hata S, Kawaguchi M, and Kouchi H. (2004) cDNA macroarray analysis of gene expression in ineffective nodules induced on the Lotus japonicus sen1 mutant. Molecular Plant-Microbe Interactions 17, 1223–1233.

    CAS  PubMed  Google Scholar 

  • Kouchi H, Shimomura K, Hata S, Hirota A, Wu GJ, Kumagai H, Tajima S, Suganuma N, Suzuki A, Aoki T, Hayashi M, Yokoyama T, Ohyama T, Asamizu E, Kuwata C, Shibata D, and Tabata S. (2004) Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus. DNA Research 4, 263–274.

    Google Scholar 

  • Kalsi G, Roberts NJ, Day RB, Stacey G, and Etzler ME. (2004) Expression of Dolichos biflorus LNP in Lotus japonicus broadens its host-strain specificity. Glycobiology 14, 1130–1130.

    Google Scholar 

  • Ortega JL, Temple SJ, Bagga S, Ghoshroy S, and Sengupta-Gopalan C. (2004) Biochemical and molecular characterization of transgenic Lotus japonicus plants constitutively overexpressing a cytosolic glutamine synthetase gene. Planta 219, 807–818.

    Article  CAS  PubMed  Google Scholar 

  • Ferraioli S, Tate R, Rogato A, Chiurazzi M, and Patriarca EJ. (2004) Development of ectopic roots from abortive nodule primordia. Molecular Plant-Microbe Interactions 17, 1043–1050.

    CAS  PubMed  Google Scholar 

  • Kinoshita N, Ooki Y, Deguchi Y, Chechetka SA, Kouchi H, Umehara Y, Izui K, and Hata S. (2004) Cloning and expression analysis of a MAPKKK gene and a novel nodulin gene of Lotus japonicus. Bioscience Biotechnology and Biochemistry 68, 1805–1807.

    Article  CAS  Google Scholar 

  • Arimura G, Ozawa R, Kugimiya S, Takabayashi J, and Bohlmann J. (2004) Herbivoreinduced defense response in a model legume. Two-spotted spider mites induce emission of (E)-beta-ocimene and transcript accumulation of (E)-beta-ocimene synthase in Lotus japonicus. Plant Physiology 135, 1976–1983.

    Article  CAS  PubMed  Google Scholar 

  • Valot B, Gianinazzi S, and Eliane DG. (2004) Sub-cellular proteomic analysis of a Medicago truncatula root microsomal fraction. Phytochemistry 65, 1721–1732.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Akune M, Kogiso M, Imagama Y, Osuki K, Uchiumi T, Higashi S, Han SY, Yoshida S, Asami T, and Abe M. (2004) Control of nodule number by the phytohormone abscisic acid in the roots of two leguminous species. Plant and Cell Physiology 45, 914–922.

    CAS  PubMed  Google Scholar 

  • Gaude N, Tippmann H, Flemetakis E, Katinakis P, Udvardi M, and Dormann P. (2004) The galactolipid digalactosyldiacylglycerol accumulates in the peribacteroid membrane of nitrogen-fixing nodules of soybean and Lotus. Journal of Biological Chemistry 279, 34624–34630.

    Article  CAS  PubMed  Google Scholar 

  • Asamizu E, Nakamura Y, Sato S, and Tabata S. (2004) Characteristics of the Lotus japonicus gene repertoire deduced from large-scale expressed sequence tag (EST) analysis. Plant Molecular Biology 54, 405–414.

    Article  PubMed  Google Scholar 

  • Colebatch G, Desbrosses G, Ott T, Krusell L, Montanari O, Kloska S, Kopka J, and Udvardi MK. (2004) Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant Journal 39, 487–512.

    Article  PubMed  Google Scholar 

  • Parniske M. (2004) Molecular genetics of the arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology 7, 414–421.

    Article  CAS  PubMed  Google Scholar 

  • Graham MA, Silverstein KAT, Cannon SB, and VandenBosch KA. (2004) Computational identification and characterization of novel genes from legumes. Plant Physiology 135, 1179–1197.

    Article  CAS  PubMed  Google Scholar 

  • Demchenko K, Winzer T, Stougaard J, Parniske M, and Pawlowski K. (2004) Distinct roles of Lotus japonicus SYMRK and SYM15 in root colonization and arbuscule formation. New Phytologist 163, 381–392.

    Article  CAS  Google Scholar 

  • Desbrosses G, Kopka C, Ott T, and Udvardi MK. (2004) Lotus japonicus LjKUP is induced late during nodule development and encodes a potassium transporter of the plasma membrane. Molecular Plant-Microbe Interactions 17, 789–797.

    CAS  PubMed  Google Scholar 

  • Tansengco ML, Imaizumi-Anraku H, Yoshikawa M, Takagi S, Kawaguchi M, Hayashi M, and Murooka Y. (2004) Pollen development and tube growth are affected in the symbiotic mutant of Lotus japonicus crinkle. Plant and Cell Physiology 45, 511–520.

    Article  CAS  PubMed  Google Scholar 

  • Spaink HP. (2004) Specific recognition of bacteria by plant LysM domain receptor kinases. Trend in Microbiology 12, 201–204.

    CAS  Google Scholar 

  • Forslund K, Moran M, Jorgensen B, Olsen CE, Asamizu E, Sato S, Tabata S, and Bak S. (2004) Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus. Plant Physiology 135, 71–84.

    Article  CAS  PubMed  Google Scholar 

  • Nukui N, Ezura H, and Minamisawa K. (2004) Transgenic Lotus japonicus with an ethylene receptor gene Cm-ERS1/H70A enhances formation of infection threads and nodule primordia. Plant and Cell Physiology 45, 427–435.

    Article  CAS  PubMed  Google Scholar 

  • D’Apuzzo E, Rogato A, Simon-Rosin U, El Alaoui H, Barbulova A, Betti M, Dimou M, Katinakis P, Marquez A, Marini AM, Udvardi MK, and Chiurazzi M. (2004) Characterization of three functional high-affinity ammonium transporters in Lotus japonicus with differential transcriptional regulation spatial expression. Plant Physiology 134, 1763–1774.

    CAS  PubMed  Google Scholar 

  • Aoki T, Sawai S, and Ayabe S. (2004) Structures and functions of oxidosqualene cyclase gene in families in Lotus japonicus. Plant and Cell Physiology 45, S5–S5.

    Article  Google Scholar 

  • Tabata S. (2004) Resources for genomics and genetics in a legume, Lotus japonicus. Plant and Cell Physiology 45, S15–S15.

    Google Scholar 

  • Akashi R. (2004) The National Bio Resource Project for the Legume, Lotus japonicus and Glycine max. Plant and Cell Physiology 45, S15–S15.

    Google Scholar 

  • Nakamura Y, Kaneko T, Asamizu E, Kato T, Sato S, and Tabata S. (2004) Current status of a large scale genome analysis of a model legume, Lotus japonicus. Plant and Cell Physiology 45, S37–S37.

    Article  Google Scholar 

  • Imaizumi-Anraku H, Takeda N, Umehara Y, Murakami Y, Yoshikawa M, Sato S, Asamizu E, Tabata S, Charpentier M, Mulder L, Perry J, Parniske M, Murooka Y, Kouchi H, Kawaguchi M, Hayashi M, and Kawasaki S. (2004) TRINITY controls nodulation and mycorrhization concomitantly in Lotus japonicus. Plant and Cell Physiology 45, S137–S137.

    Google Scholar 

  • Yano K, Vickers K, Perry J, Sato S, Asamizu E, Tabata S, Kawaguchi M, Murooka Y, Parniske M, and Hayashi M. (2004) SYM82 of Lotus japonicus is required for symbiosis of rhizobia and arbuscular mycorrhizal fungi. Plant and Cell Physiology 45, S138–S138.

    Article  Google Scholar 

  • Hayashi M, Tansengco M, Yano K, Imaizumi-Anraku H, Kawasaki S, Sato S, Tabata S, Kawaguchi M, and Murooka Y. (2004) Genetic analysis of infection thread mutants in Lotus japonicus. Plant and Cell Physiology 45, S138–S138.

    Google Scholar 

  • Ishikawa N, Sakai T, Inada S, and Tsukaya H. (2004) Analysis of the stipule-less mutants in Lotus japonicus. Plant and Cell Physiology 45, S163–S163.

    Google Scholar 

  • Nishida H, Sakurai N, Suzuki H, and Shibata D. (2004) cDNA macroarray analysis in Lotus japonicus suspension-cultured cells. Plant and Cell Physiology 45, S166–S166.

    Google Scholar 

  • Takikawa Y, Kakutani K, Moriura N, Yokoyama H, Nonomura T, Matsuda Y, and Toyoda H. (2004) Expression analysis of transporter genes in Lotus japonicus. Plant and Cell Physiology 45, S168–S168.

    Google Scholar 

  • Mai TH, Nomura M, Hirashima Y, Isomoto M, Okamoto E, Asamizu E, Sato S, Kato T, Tabata S, Takegawa K, and Tajima S. (2004) Functional analysis of Sed5-like gene in Lotus japonicus. Plant and Cell Physiology 45, S169–S169.

    Google Scholar 

  • Nomura M, Fujii M, Kenmotsu T, Hata S, and Tajima S. (2004) Functional analysis of PEPC in Lotus japonicus. Plant and Cell Physiology 45, S170–S170.

    Google Scholar 

  • Shimoda Y, Suzuki A, Abe M, Higashi S, Sato S, Tabata S, and Uchiumi T. (2004) Functions of nonsymbiotic globin genes in Lotus japonicus. Plant and Cell Physiology 45, S171–S171.

    Google Scholar 

  • Kumagai H, Umehara Y, Sato S, Kaneko T, Tabata S, and Kouchi H. (2004) Phenotypic and genetic analysis of the Lotus japonicus symbiotic mutant 56M. Plant and Cell Physiology 45, S187–S187.

    Google Scholar 

  • Umehara Y, Chen WL, Hossain MS, Maekawa T, Hayashi M, Kojima T, Ohtomo R, Hayashi M, Harada K, and Kouchi H. (2004) Symbiotic mutants of Lotus japonicus derived from cultured cells. Plant and Cell Physiology 45, S188–S188.

    Google Scholar 

  • Maekawa T, Hayashi M, Asamizu E, Tabata S, Kouchi H, Murooka Y. (2004) Transcriptional analysis of nitrate response in root hairs of Lotus japonicus, jasmonic acid responsive genes are controlled by nitrate. Plant and Cell Physiology 45, S194–S194.

    Google Scholar 

  • Asamizu E, Nakamura Y, Sato S, and Tabata S. (2004) Large-scale gene expression analysis of the Lotus japonicus nodulation process by SAGE, and analysis of the promoter region responsible for the induction. Plant and Cell Physiology 45, S202–S202.

    Google Scholar 

  • Yano K, Sakurai N, Nishida H, Namai K, Sakai Y, Suzuki H, Asamizu E, Tabata S, Saito K, and Shibata D. (2004) Establishment and large-scale analysis of full-length cDNA libraries in Lotus japonicus. Plant and Cell Physiology 45, S204–S204.

    Article  Google Scholar 

  • Nakano M, Yamamoto R, Fujisawa N, Inada S, Okada K, and Sakai T. (2004) Comprehensive preparation of mutants in the model plant of legume, Lotus japonicus. Plant and Cell Physiology 45, S206–S206.

    Google Scholar 

  • Yoshikawa M, Kouchi H, Takagi S, Kawaguchi M, Hayashi M, and Murooka Y. (2004) Root hair deformation and actin cytoskeleton behavior in early symbiotic response deficient mutants of Lotus japonicus. Plant and Cell Physiology 45, S218–S218.

    Google Scholar 

  • Lohar DP, Schaff JE, Laskey JG, Kieber JJ, Bilyeu KD, and Bird DM. (2004) Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant Journal 38, 203–214.

    Article  CAS  PubMed  Google Scholar 

  • Uchiumi T, Ohwada T, Itakura M, Mitsui H, Nukui N, Dawadi P, Kaneko T, Tabata S, Yokoyama T, Tejima K, Saeki K, Omori H, Hayashi M, Maekawa T, Sriprang R, Murooka Y, Tajima S, Simomura K, Nomura M, Suzuki A, Shimoda Y, Sioya K, Abe M, and Minamisawa K. (2004) Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome. Journal of Bacteriology 186, 2439–2448.

    Article  CAS  PubMed  Google Scholar 

  • Edwards ME, Choo TS, Dickson CA, Scott C, Gidley MJ, and Reid JSG. (2004) The seeds of Lotus japonicus lines transformed with sense, antisense, and sense/antisense galactomannan galactosyltransferase constructs have structurally altered galactomannans in their endosperm cell walls. Plant Physiology 134, 1153–1162.

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Sato S, Nakamura Y, Kaneko T, Asamizu E, and Tabata S. (2003) Structural analysis of a Lotus japonicus genome. V. Sequence features and mapping of sixty-four TAC clones which cover the 6.4 Mb regions of the genome. DNA Research 10, 277–285.

    Article  CAS  PubMed  Google Scholar 

  • Bartsev AV, Deakin WJ, Boukli NM, McAlvin CB, Stacey G, Malnoe P, Broughton WJ, and Staehelin C. (2004) NopL, an effector protein of Rhizobium sp NGR234, thwarts activation of plant defense reactions. Plant Physiology 134, 871–879.

    Article  CAS  PubMed  Google Scholar 

  • Stracke S, Sato S, Sandal N, Koyama M, Kaneko T, Tabata S, and Parniske M. (2004) Exploitation of colinear relationships between the genomes of Lotus japonicus, Pisum sativum and Arabidopsis thaliana, for positional cloning of a legume symbiosis gene. Theoretical and Applied Genetics S108, 442–449.

    Google Scholar 

  • Wandrey M, Trevaskis B, Brewin N, and Udvardi MK. (2004) Molecular and cell biology of a family of voltage-dependent anion channel porins in Lotus japonicus. Plant Physiology 134, 182–193.

    Article  CAS  PubMed  Google Scholar 

  • Harrison J, Hirel B, and Limami AM. (2004) Variation in nitrate uptake and assimilation between two ecotypes of Lotus japonicus and their recombinant inbred lines. Physiologia Plantarum 120, 124–131.

    Article  CAS  PubMed  Google Scholar 

  • Miyake K, Ito T, Senda M, Ishikawa R, Harada T, Niizeki M, and Akada S. (2003) Isolation of a subfamily of genes for R2R3-MYB transcription factors showing up-regulated expression under nitrogen nutrient-limited conditions. Plant Molecular Biology 53, 237–245.

    Article  CAS  PubMed  Google Scholar 

  • Cannon SB, McCombie WR, Sato S, Tabata S, Denny R, Palmer L, Katari M, Young ND, and Stacey G. (2003) Evolution and microsynteny of the apyrase gene family in three legume genomes. Molecular Genetics and Genomics 270, 347–361.

    Article  CAS  PubMed  Google Scholar 

  • Lohar DP, and Bird DM. (2003) Lotus japonicus, A new model to study root-parasitic nematodes. Plant and Cell Physiology 44, 1176–1184.

    Article  CAS  PubMed  Google Scholar 

  • Doll J, Hause B, Demchenko K, Pawlowski K, and Krajinski F. (2003) A member of the germin-like protein family is a highly conserved mycorrhiza-specific induced gene. Plant and Cell Physiology 44, 1208–1214.

    Article  CAS  PubMed  Google Scholar 

  • Bartsev AV, Boukli NM, Deakin WJ, Staehelin C, and Broughton WJ. (2003) Purification and phosphorylation of the effector protein NopL from Rhizobium sp NGR234. FEBS Letters 554, 271–274.

    Article  CAS  PubMed  Google Scholar 

  • Pacios-Bras C, Schlaman HRM, Boot K, Admiraal P, Langerak JM, Stougaard J, Spaink HP. (2003) Auxin distribution in Lotus japonicus during root nodule development. Plant Molecular Biology 52, 1169–1180.

    Article  CAS  PubMed  Google Scholar 

  • Andersen SU, Cvitanich C, Hougaard BK, Roussis A, Gronlund M, Jensen DB, Frokjaer LA, and Jensen EO. (2003) The glucocorticoid-inducible GVG system causes severe growth defects in both root and shoot of the model legume Lotus japonicus. Molecular Plant-Microbe Interactions 16, 1069–1076.

    CAS  PubMed  Google Scholar 

  • Matamoros MA, Clemente MR, Sato S, Asamizu E, Tabata S, Ramos J, Moran JF, Stiller J, Gresshoff PM, and Becana M. (2003) Molecular analysis of the pathway for the synthesis of thiol tripeptides in the model legume Lotus japonicus. Molecular Plant-Microbe Interactions 16, 1039–1046.

    CAS  PubMed  Google Scholar 

  • Sawbridge T, Ong EK, Binnion C, Emmerling M, Meath K, Nunan K, O’Neill M, O’Toole F, Simmonds J, Wearne K, Winkworth A, and Spangenberg G. (2003) Generation and analysis of expressed sequence tags in white clover (Trifolium repens L.). Plant Science 165, 1077–1087.

    CAS  Google Scholar 

  • Bertioli DJ, Leal-Bertioli SCM, Lion MB, Santos VL, Pappas G, Cannon SB, and Guimaraes PM. (2003) A large scale analysis of resistance gene homologues in Arachis. Molecular Genetics and Genomics 270, 34–45.

    Article  CAS  PubMed  Google Scholar 

  • Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Gronlund M, Sato S, Nakamura Y, Tabata S, Sandal N, and Stougaard J. (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425, 585–592.

    Article  CAS  PubMed  Google Scholar 

  • Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, and Stougaard J. (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425, 637–640.

    Article  CAS  PubMed  Google Scholar 

  • Harrison J, de Crescenzo MAP, Sene O, and Hirel B. (2003) Does lowering glutamine synthetase activity in nodules modify nitrogen metabolism and growth of Lotus japonicus?. Plant Physiology 133, 253–262.

    Article  CAS  PubMed  Google Scholar 

  • VandenBosch KA, and Stacey G. (2003) Summaries of legume genomics projects from around the globe. Community resources for crops and models. Plant Physiology 131, 840–865.

    Google Scholar 

  • Perry JA, Wang TL, Welham TJ, Gardner S, Pike JM, Yoshida S, and Parniske M. (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiology 131, 866–871.

    Article  CAS  PubMed  Google Scholar 

  • Somers DA, Samac DA, and Olhoft PM. (2003) Recent advances in legume transformation. Plant Physiology 131, 892–899.

    Article  CAS  PubMed  Google Scholar 

  • Szczyglowski K, and Amyot L. (2003) Symbiosis, inventiveness by recruitment?. Plant Physiology 131, 935–940.

    Article  CAS  PubMed  Google Scholar 

  • Shimada N, Aoki T, Sato S, Nakamura Y, Tabata S, and Ayabe S. (2003) A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus. Plant Physiology 131, 941–951.

    CAS  PubMed  Google Scholar 

  • Borisov AY, Madsen LH, Tsyganov VE, Umehara Y, Voroshilova VA, Batagov AO, Sandal N, Mortensen A, Schauser L, Ellis N, Tikhonovich IA, and Stougaard, J. (2003) The sym35 gene required for root nodule development in pea is an ortholog of nin from Lotus japonicus. Plant Physiology 131, 1009–1017.

    Article  CAS  PubMed  Google Scholar 

  • Tansengco ML, Hayashi M, Kawaguchi M, Imaizumi-Anraku H, and Murooka Y. (2003) crinkle, a novel symbiotic mutant that affects the infection thread growth and alters the root hair, trichome, and seed development in Lotus japonicus. Plant Physiology 131, 1054–1063.

    Article  CAS  PubMed  Google Scholar 

  • Wienkoop S, and Saalbach G. (2003) Proteome analysis. Novel proteins identified at the peribacteroid membrane from Lotus japonicus root nodules. Plant Physiology 131, 1080–1090.

    Article  CAS  PubMed  Google Scholar 

  • Flemetakis E, Dimou M, Cotzur D, Aivalakis G, Efrose RC, Kenoutis C, Udvardi M, and Katinakis P. (2003) A Lotus japonicus beta-type carbonic anhydrase gene expression pattern suggests distinct physiological roles during nodule development. Biochimica et Biophysica Acta-Gene Structure and Expression 1628, 186–194.

    CAS  Google Scholar 

  • Santi C, von Groll U, Ribeiro A, Chiurazzi M, Auguy F, Bogusz D, Franche C, and Pawlowski K. (2003) Comparison of nodule induction in legume and actinorhizal symbioses, The induction of actinorhizal nodules does not involve ENOD40. Molecular Plant-Microbe Interactions 16, 808–816.

    CAS  PubMed  Google Scholar 

  • Kato K, Kanahama K, and Kanayama Y. (2003) Nitrate-independent expression of plant nitrate reductase in Lotus japonicus root nodules. Plant and Cell Physiology 44, S39–S39.

    Article  Google Scholar 

  • Suganuma N, Yamamoto A, Kato T, Okada T, Kawaguchi M, and Kouchi H. (2003) Gene expression analysis in ineffective nodules of Lotus japonicus Fix mutant Ljsym75 with macroarray. Plant and Cell Physiology 44, S79–S79.

    Google Scholar 

  • Shimada N, Aoki T, Sato S, Kaneko T, Tabata S, and Ayabe S. (2003) Structures of the genes involved in 5-deoxyisoflavonoid biosynthesis in Lotus japonicus. Plant and Cell Physiology 44, S96–S96.

    Google Scholar 

  • Asamizu E, Nakamura Y, Sato S, and Tabata S. (2003) Global gene expression analysis of the Lotus japonicus nodulation process by SAGE, and generation of novel 3 ′ cDNA fragments. Plant and Cell Physiology 44, S131–S131.

    Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, and Tabata S. (2003) Progress in Lotus japonicus genome sequencing project. Plant and Cell Physiology 44, S132–S132.

    Google Scholar 

  • Sakai T. (2003) Comprehensive preparation and utilization of mutants in the model plant of legume, Lotus japonicus. Plant and Cell Physiology 44, S148–S148.

    Google Scholar 

  • Inada S, Takahashi M, Okada K, and Sakai T. (2003) Molecular genetic analysis of leaf movement induced by blue light in Lotus japonicus. Plant and Cell Physiology 44, S195–S195.

    Google Scholar 

  • Hanyu M, Hattori Y, and Saeki K. (2003) Mesorhizobium loti genes that alter nodulation capacity of Rhizobium etli on Lotus japonicus. Plant and Cell Physiology 44, S211–S211.

    Google Scholar 

  • Umehara Y, Chen WL, and Kouchi H. (2003) The symbiotic mutants of Lotus japonicus derived from the regenerated plants. Plant and Cell Physiology 44, S211–S211.

    Google Scholar 

  • Kumagai H, Shimomura K, Tajima S, and Kouchi H. (2003) The efficacy of RNAi in Lotus japonicus roots and root nodules. Plant and Cell Physiology 44, S211–S211.

    Google Scholar 

  • Furuya F, Uchiumi T, Suzuki A, and Abe M. (2003) Expression of leghemoglobin-GFP fusion gene in the hairy root of Lotus japonicus. Plant and Cell Physiology 44, S211–S211.

    Google Scholar 

  • Hayashi M, Tansengco M, Maekawa T, Yano K, Kawaguchi M, and Murooka Y. (2003) Phenotype analysis of infection thread mutants in Lotus japonicus. Plant and Cell Physiology 44, S212–S212.

    Google Scholar 

  • Kumagai H, and Kouchi H. (2003) Gene silencing by expression of hairpin RNA in Lotus japonicus roots and root nodules. Molecular Plant-Microbe Interactions 16, 663–668.

    CAS  PubMed  Google Scholar 

  • Asaimizu E, Kato T, Sato S, Nakamura Y, Kaneko T, and Tabata S. (2003) Structural analysis of a Lotus japonicus genome. IV. Sequence features and mapping of seventy-three TAC clones which cover the 7.5 Mb regions of the genome. DNA Research 10, 115–122.

    Google Scholar 

  • Suganuma N, Nakamura Y, Yamamoto M, Ohta T, Koiwa H, Akao S, and Kawaguchi M. (2003) The Lotus japonicus Sen1 gene controls rhizobial differentiation into nitrogenfixing bacteroids in nodules. Molecular Genetics and Genomics 269, 312–320.

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Okamura Y, Kanahama K, and Kanayama Y. (2003) Nitrate-independent expression of plant nitrate reductase in Lotus japonicus root nodules. Journal of Experimental Botany 54, 1685–1690.

    Article  CAS  PubMed  Google Scholar 

  • Flemetakis E, Dimou M, Cotzur D, Efrose RC, Aivalakis G, Colebatch G, Udvardi M, and Katinakis P. (2003) A sucrose transporter, LjSUT4, is up-regulated during Lotus japonicus nodule development. Journal of Experimental Botany 54, 1789–1791.

    Article  CAS  PubMed  Google Scholar 

  • Broughto WJ, Hernandez G, Blair M, Beebe S, Gepts P, and Vanderleyden J. (2003) Beans (Phaseolus spp.)-model food legumes. Plant and Soil 252, 55–128.

    Google Scholar 

  • Gronlund M, Gustafsen C, Roussis A, Jensen D, Nielsen LP, Marcker KA, and Jensen EO. (2003) The Lotus japonicus ndx gene family is involved in nodule function and maintenance. Plant Molecular Biology 52, 303–316.

    CAS  PubMed  Google Scholar 

  • Lombari P, Ercolano E, El Alaoui H, and Chiurazzi M. (2003) A new transformation-regeneration procedure in the model legume Lotus japonicus, root explants as a source of large numbers of cells susceptible to Agrobacterium-mediated transformation. Plant Cell Reports 21, 771–777.

    CAS  PubMed  Google Scholar 

  • Wretblad S, Bohman S, and Dixelius C. (2003) Overexpression of a Brassica nigra cDNA gives enhanced resistance to Leptosphaeria maculans in B-napus. Molecular Plant-Microbe Interactions 16, 477–484.

    CAS  PubMed  Google Scholar 

  • Akamine S, Nakamori K, Chechetka SA, Banba M, Umehara Y, Kouchi H, Izui K, and Hata S. (2003) cDNA cloning, mRNA expression, and mutational analysis of the squalene synthase gene of Lotus japonicus. Biochimica et Biophysica Acta-Gene Structure and Expression 1626, 97–101.

    Google Scholar 

  • Kawaguchi M. (2003) SLEEPLESS, a gene conferring nyctinastic movement in legume. Journal of Plant Research 116, 151–154.

    PubMed  Google Scholar 

  • Young ND, Mudge J, and Ellis THN. (2003) Legume genomes, more than peas in a pod. Current Opinion in Plant Biology 6, 199–204.

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Asamizu E, Kato T, Sato S, Nakamura Y, and Tabata S. (2003) Structural analysis of a Lotus japonicus genome. III. Sequence features and mapping of sixty-two TAC clones which cover the 6.7 Mb regions of the genome. DNA Research 10, 27–33.

    CAS  PubMed  Google Scholar 

  • Nakagawa T, Izumi T, Banba M, Umehara Y, Kouchi H, Izui K, and Hata S. (2003) Characterization and expression analysis of genes encoding phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase of Lotus japonicus, a model legume. Molecular Plant-Microbe Interactions 16, 281–288.

    CAS  PubMed  Google Scholar 

  • Harris JM, Wais R, and Long SR. (2003) Rhizobium-induced calcium spiking in Lotus japonicus. Molecular Plant-Microbe Interactions 16, 335–341.

    CAS  PubMed  Google Scholar 

  • Zhang SL, Sandal N, Polowick PL, Stiller J, Stougaard J, and Fobert PR. (2003) Proliferating Floral Organs (Pfo), a Lotus japonicus gene required for specifying floral meristem determinacy and organ identity, encodes an F-box protein. Plant Journal 33, 607–619.

    Article  CAS  PubMed  Google Scholar 

  • Suarez R, Marquez J, Shishkova S, and Hernandez G. (2003) Overexpression of alfalfa cytosolic glutamine synthetase in nodules and flowers of transgenic Lotus japonicus plants. Physiologia Plantarum 117, 326–336.

    Article  CAS  PubMed  Google Scholar 

  • Akashi T, Sawada Y, Shimada N, Sakurai N, Aoki T, and Ayabe S. (2003) cDNA cloning and biochemical characterization of S-adenosyl-L-methionine, 2,7,4 ′-trihydroxyisoflavanone 4′-O-methyltransferase, a critical enzyme of the legume isoflavonoid phytoalexin pathway. Plant and Cell Physiology 44, 103–112.

    Article  CAS  PubMed  Google Scholar 

  • Iturbe-Ormaetxe I, Haralampidis K, Papadopoulou K, and Osbourn AE. (2003) Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus. Plant Molecular Biology 51, 731–743.

    Article  CAS  PubMed  Google Scholar 

  • Fei HM, Chaillou S, Hirel B, Mahon JD, and Vessey JK. (2003) Overexpression of a soybean cytosolic glutamine synthetase gene linked to organ-specific promoters in pea plants grown in different concentrations of nitrate. Planta 216, 467–474.

    CAS  PubMed  Google Scholar 

  • Imaizumi-Anraku H. (2003) Legume nodulation and mycorrhiza formation-common genes are involved in both symbiotic interactions. Nippon Nogeikagaku Kaishi-Journal of the Japan Society for Bioscience Biotechnology and Agrochemistry 77, 121–123.

    CAS  Google Scholar 

  • Tawaraya K. (2003) Signaling in arbuscular mycorrhizal symbiosis. Nippon Nogeikagaku Kaishi-Journal of the Japan Society for Bioscience Biotechnology and Agrochemistry 77, 124–125.

    CAS  Google Scholar 

  • Simon-Rosin U, Wood C, and Udvardi MK. (2003) Molecular and cellular characterisation of LjAMT2,1, an ammonium transporter from the model legume Lotus japonicus. Plant Molecular Biology 51, 99–108.

    Article  CAS  PubMed  Google Scholar 

  • van Spronsen PC, Tak T, Rood AMM, van Brussel AAN, Kijne JW, and Boot KJM. (2003) Salicylic acid inhibits indeterminate-type nodulation but not determinate-type nodulation. Molecular Plant-Microbe Interactions 16, 83–91.

    PubMed  Google Scholar 

  • Perry AS, Brennan S, Murphy DJ, Kavanagh TA, and Wolfe KH. (2002) Evolutionary reorganisation of a large operon in adzuki bean chloroplast DNA caused by inverted repeat movement. DNA Research 9, 157–162.

    Article  CAS  PubMed  Google Scholar 

  • Jiang QY, and Gresshoff PM. (2002) Shoot control of hypernodulation and aberrant root formation in the har1-1 mutant of Lotus japonicus. Functional Plant Biology 29, 1371–1376.

    Article  CAS  Google Scholar 

  • Uchiumi T, Shimoda Y, Tsuruta T, Mukoyoshi Y, Suzuki A, Senoo K, Sato S, Kato T, Tabata S, Higashi S, and Abe M. (2002) Expression of symbiotic and nonsymbiotic globin genes responding to microsymbionts on Lotus japonicus. Plant and Cell Physiology 43, 1351–1358.

    Article  CAS  PubMed  Google Scholar 

  • Harris J. (2002) Shedding light on an underground problem. Proceeding of the National Academy of Sciences of the United States of America 99, 14616–14618.

    CAS  Google Scholar 

  • Nishimura R, Ohmori M, Fujita H, and Kawaguchi M. (2002) A Lotus basic leucine zipper protein with a RING-finger motif negatively regulates the developmental program of nodulation. Proceeding of the National Academy of Sciences of the United States of America 99, 15206–15210.

    CAS  Google Scholar 

  • Aoki T, Kamizawa A, and Ayabe S. (2002) Efficient Agrobacterium-mediated transformation of Lotus japonicus with reliable antibiotic selection. Plant Cell Reports 21, 238–243.

    CAS  Google Scholar 

  • Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F, Pajuelo E, Sandal N, and Stougaard J. (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420, 422–426.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura R, Hayashi M, Wu GJ, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Harada K, and Kawaguchi M. (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420, 426–429.

    Article  CAS  PubMed  Google Scholar 

  • Nakamori K, Takabatake R, Umehara Y, Kouchi H, Izui K, and Hata S. (2002) Cloning, functional expression, and mutational analysis of a cDNA for Lotus japonicus mitochondrial phosphate transporter. Plant and Cell Physiology 43, 1250–1253.

    Article  CAS  PubMed  Google Scholar 

  • Endo M, Hakozaki H, Kokubun T, Masuko H, Takahata Y, Tsuchiya T, Higashitani A, Tabata S, and Watanabe M. (2002) Generation of 919 expressed sequence tags from immature flower buds and gene expression analysis using expressed sequence tags in the model plant Lotus japonicus. Genes & Genetic Systems 77, 277–282.

    Article  CAS  Google Scholar 

  • Pedrosa A, Sandal N, Stougaard J, Schweizer D, and Bachmair A. (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161, 1661–1672.

    CAS  PubMed  Google Scholar 

  • Sandal N, Krusell L, Radutoiu S, Olbryt M, Pedrosa A, Stracke S, Sato S, Kato T, Tabata S, Parniske M, Bachmair A, Ketelsen T, and Stougaard J. (2002) A genetic linkage map of the model legume Lotus japonicus and strategies for fast mapping of new loci. Genetics 161, 1673–1683.

    CAS  PubMed  Google Scholar 

  • Nishimura R, Ohmori M, and Kawaguchi M. (2002) The novel symbiotic phenotype of enhanced-nodulating mutant of Lotus japonicus, astray mutant is an early nodulating mutant with wider nodulation zone. Plant and Cell Physiology 43, 853–859.

    CAS  PubMed  Google Scholar 

  • Wallace IS, Wills DM, Guenther JF, and Roberts DM. (2002) Functional selectivity for glycerol of the nodulin 26 subfamily of plant membrane intrinsic proteins. FEBS Letters 523, 109–112.

    Article  CAS  PubMed  Google Scholar 

  • Orea A, Pajuelo P, Pajuelo E, Quidiello C, Romero JM, and Marquez AJ. (2002) Isolation of photorespiratory mutants from Lotus japonicus deficient in glutamine synthetase. Physiologia Plantarum 115, 352–361.

    Article  CAS  PubMed  Google Scholar 

  • Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, and Parniske M. (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417, 959–962.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Kaneko T, Asamizu E, Kato T, Sato S, and Tabata S. (2002) Structural analysis of a Lotus japonicus genome. II. Sequence features and mapping of sixty-five TAC clones which cover the 6.5-Mb regions of the genome. DNA Research 9, 63–70.

    CAS  PubMed  Google Scholar 

  • Podila GK. (2002) Signaling in mycorrhizal symbioses-elegant mutants lead the way. New Phytologist 154, 541–545.

    Article  Google Scholar 

  • Novero M, Faccio A, Genre A, Stougaard J, Webb KJ, Mulder L, Parniske M, and Bonfante P. (2002) Dual requirement of the LjSym4 gene for mycorrhizal development in epidermal and cortical cells of Lotus japonicus roots. New Phytologist 154, 741–749.

    Article  CAS  Google Scholar 

  • Colebatch G, Kloska S, Trevaskis B, Freund S, Altmann T, and Udvardi MK. (2002) Novel aspects of symbiotic nitrogen fixation uncovered by transcript profiling with cDNA arrays. Molecular Plant-Microbe Interactions 15, 411–420.

    CAS  PubMed  Google Scholar 

  • Pajuelo P, Pajuelo E, Orea A, Romero JM, and Marquez AJ. (2002) Influence of plant age and growth conditions on nitrate assimilation in roots of Lotus japonicus plants. Functional Plant Biology 29, 485–494.

    Article  Google Scholar 

  • Endo M, Matsubara H, Kokubun T, Masuko H, Takahata Y, Tsuchiya T, Fukuda H, Demura T, and Watanabe M. (2002) The advantages of cDNA microarray as an effective tool for identification of reproductive organ-specific genes in a model legume, Lotus japonicus. FEBS Letters 514, 229–237.

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi R, Kameya N, Nakamura I, Ayabe S, and Aoki T. (2002) Construction of activation tag lines of Lotus japonicus. Plant and Cell Physiology 43, S73–S73.

    Google Scholar 

  • Izumi T, Nakagawa T, Banba M, Umehara Y, Kouchi H, Izui K, and Hata S. (2002) Expression anayses of phosphoenolpyruvate Carboxylases (PEPCs) and a PEPC kinase in Lotus japonicus. Plant and Cell Physiology 43, S74–S74.

    Google Scholar 

  • Shimomura K, Takane K, Nomura M, Kouchi H, and Tajima S. (2002) Characterization of transgenic Lotus japonicus carrying sense and anti-sense uricase CDNA of Lotus japonicus. Plant and Cell Physiology 43, S74–S74.

    Google Scholar 

  • Thu HM, Fuke T, Nomura M, Takegawa K, Asamizu E, Tabata S, and Tajima S. (2002) Expression analysis of SNARE-like genes in Lotus japonicus. Plant and Cell Physiology 43, S74–S74.

    Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Kato T, Asamizu E, and Tabata S. (2002) A large scale genome analysis of Lotus japonicus-I. Genome sequencing and mapping. Plant and Cell Physiology 43, S124–S124.

    Google Scholar 

  • Nakamura Y, Sato S, Kaneko T, Asamizu E, Kato T, and Tabata S. (2002) A large scale genome analysis of Lotus japonicus-II. Annotation pipeline and WWW database. Plant and Cell Physiology 43, S124–S124.

    Article  Google Scholar 

  • Murakmi Y, Imaizumi-Anraku H, Kawaguchi M, Kawaski S. (2002) HEGS/AFLP saturation mapping of causal gene of the initial process mutant of nodulation sym70 of Lotus japonicus. Plant and Cell Physiology 43, S124–S124.

    Google Scholar 

  • Asamizu E, Sato S, and Tabata S. (2002) Gene expression analysis of Lotus japonicus nodulation process using the micro-SAGE method. Plant and Cell Physiology 43, S207–S207.

    Google Scholar 

  • Flemetakis E, Agalou A, Kavroulakis N, Dimou M, Martsikovskaya A, Slater A, Spaink HP, Roussis A, and Katinakis P. (2002) Lotus japonicus gene ljsbp is highly conserved among plants and animals and encodes a homologue to the mammalian selenium-binding proteins. Molecular Plant-Microbe Interactions 15, 313–322.

    CAS  PubMed  Google Scholar 

  • Poulsen C, and Podenphant L. (2002) Expressed sequence tags from roots and nodule primordia of Lotus japonicus infected with Mesorhizobium loti. Molecular Plant-Microbe Interactions 15, 376–379.

    CAS  PubMed  Google Scholar 

  • Genre A, and Bonfante P. (2002) Epidermal cells of a symbiosis-defective mutant of Lotus japonicus show altered cytoskeleton organisation in the presence of a mycorrhizal fungus. Protoplasma 219, 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Roberts DM, and Tyerman SD. (2002) Voltage-dependent cation channels permeable to NH4+, K+, and Ca2+ in the symbiosome membrane of the model legume Lotus japonicus. Plant Physiology 128, 370–378.

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi M, Imaizumi-Anraku H, Koiwa H, Niwa S, Ikuta A, Syono K, and Akao S. (2002) Root, root hair, and symbiotic mutants of the model legume Lotus japonicus. Molecular Plant-Microbe Interactions 15, 17–26.

    CAS  PubMed  Google Scholar 

  • Sprent J. (2002) Knobs, knots and nodules-the renaissance in legume symbiosis research. New Phytologist 153, 2–6.

    Article  Google Scholar 

  • Colebatch G, Trevaskis B, and Udvardi M. (2002) Symbiotic nitrogen fixation research in the postgenomics era. New Phytologist 153, 37–42.

    CAS  Google Scholar 

  • Kawaguchi M, Motomura T, Imaizumi-Anraku H, Akao S, and Kawasaki S. (2001) Providing the basis for genomics in Lotus japonicus, the accessions Miyakojima and Gifu are appropriate crossing partners for genetic analyses. Molecular Genetics and Genomics 266, 157–166.

    CAS  PubMed  Google Scholar 

  • Muller J, Wiemken A, and Boller T. (2001) Redifferentiation of bacteria isolated from Lotus japonicus nroot nodules colonized by Rhizobium sp NGR234. Journal of Experimental Botany 52, 2181–2186.

    CAS  PubMed  Google Scholar 

  • Orea A, Pajuelo P, Pajuelo E, Marquez AJ, and Romero JM. (2001) Characterisation and expression studies of a root cDNA encoding for ferredoxin-nitrite reductase from Lotus japonicus. Physiologia Plantarum 113, 193–202.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Miyahara A, Sato S, Kato T, Yoshikawa M, Taketa M, Hayashi M, Pedrosa A, Onda R, Imaizumi-Anraku H, Bachmair A, Sandal N, Stougaard J, Murooka Y, Tabata S, Kawasaki S, Kawaguchi M, and Harada, K. (2001) Construction of a genetic linkage map of the model legume Lotus japonicus using an intraspecific F-2 population. DNA Research 8, 301–310.

    CAS  PubMed  Google Scholar 

  • Sato S, Kaneko T, Nakamura Y, Asamizu E, Kato T, and Tabata S. (2001) Structural analysis of a Lotus japonicus genome. I. Sequence features and mapping of fifty-six TAC clones which cover the 5.4 Mb regions of the genome. DNA Research 8, 311–318.

    Article  CAS  PubMed  Google Scholar 

  • Lohar DP, Schuller K, Buzas DM, Gresshoff PM, and Stiller J. (2001) Transformation of Lotus japonicus using the herbicide resistance bar gene as a selectable marker. Journal of Experimental Botany 52, 1697–1702.

    Article  CAS  PubMed  Google Scholar 

  • Salvemini F, Marini AM, Riccio A, Patriarca EJ, and Chiurazzi M. (2001) Functional characterization of an ammonium transporter gene from Lotus japonicus. Gene 270, 237–243.

    Article  CAS  PubMed  Google Scholar 

  • Stougaard J. (2001) Genetics and genomics of root symbiosis. Current Opinion in Plant Biology 4, 328–335.

    Article  CAS  PubMed  Google Scholar 

  • Kapranov P, Routt SM, Bankaitis VA, de Bruijn FJ, and Szczyglowski K. (2001) Nodulespecific regulation of phosphatidylinositol transfer protein expression in Lotus japonicus. Plant Cell 13, 1369–1382.

    Article  CAS  PubMed  Google Scholar 

  • Marsh JF, and Schultze M. (2001) Analysis of arbuscular mycorrhizas using symbiosis-defective plant mutants. New Phytologist 150, 525–532.

    Article  Google Scholar 

  • van Spronsen PC, Gronlund M, Bras CP, Spaink HP, and Kijne JW. (2001) Cell biological changes of outer cortical root cells in early determinate nodulation. Molecular Plant-Microbe Interactions 14, 839–847.

    PubMed  Google Scholar 

  • Niwa S, Kawaguchi M, Imaizumi-Anraku H, Chechetka SA, Ishizaka M, Ikuta A, and Kouchi H. (2001) Responses of a model legume Lotus japonicus to lipochitin oligosaccharide nodulation factors purified from Mesorhizobium loti JRL501. Molecular Plant-Microbe Interactions 14, 848–856.

    CAS  PubMed  Google Scholar 

  • Men AE, Meksem K, Kassem MA, Lohar D, Stiller J, Lightfoot D, and Gresshoff PM. (2001) A bacterial artificial chromosome library of Lotus japonicus constructed in an Agrobacterium tumefaciens-transformable vector. Molecular Plant-Microbe Interactions 14, 422–425.

    CAS  PubMed  Google Scholar 

  • Banba M, Siddique ABM, Kouchi H, Izui K, and Hata S. (2001) Lotus japonicus forms early senescent root nodules with Rhizobium etli. Molecular Plant-Microbe Interactions 14, 173–180.

    CAS  PubMed  Google Scholar 

  • Kato T, Kaneko T, Sato S, Nakamura Y, and Tabata S. (2000) Complete structure of the chloroplast genome of a legume, Lotus japonicus. DNA Research 7, 323–330.

    Article  CAS  PubMed  Google Scholar 

  • Guenther JF, and Roberts DM. (2000) Functional characterization of two members of the Major Intrinsic Protein family in nodules of the model legume Lotus japonicus. Molecular Biology of the Cell 11, 221A–221A.

    Google Scholar 

  • Roberts DM, and Tyerman SD. (2000) A voltage-activated cation selective channel permeable to NH4 + 4 on the symbiosome membrane of the model legume Lotus japonicus. Molecular Biology of the Cell 11, 222A–222A.

    Google Scholar 

  • Shimada N, Akashi T, Aoki T, and Ayabe S. (2000) Induction of isoflavonoid pathway in the model legume Lotus japonicus, molecular characterization of enzymes involved in phytoalexin biosynthesis. Plant Science 160, 37–47.

    Article  CAS  PubMed  Google Scholar 

  • Ozawa R, Shimoda T, Kawaguchi M, Arimura G, Horiuchi J, Nishioka T, and Takabayashi J. (2000) Lotus japonicus infested with herbivorous mites emits volatile compounds that attract predatory mites. Journal of Plant Research 113, 427–433.

    Google Scholar 

  • Ito M, Miyamoto J, Mori Y, Fujimoto S, Uchiumi T, Abe M, Suzuki A, Tabata S, and Fukui K. (2000) Genome and chromosome dimensions of Lotus japonicus. Journal of Plant Research 113, 435–442.

    Google Scholar 

  • Solaiman MZ, Senoo K, Kawaguchi M, Imaizumi-Anraku H, Akao S, Tanaka A, and Obata H. (2000) Characterization of mycorrhizas formed by Glomus sp on roots of hypernodulating mutants of Lotus japonicus. Journal of Plant Research 113, 443–448.

    Google Scholar 

  • Kawaguchi M. (2000) Current development of Lotus japonicus research. Journal of Plant Research 113, 449–449.

    Google Scholar 

  • Asamizu E, Watanabe M, and Tabata S. (2000) Large scale structural analysis of cDNAs in the model legume, Lotus japonicus. Journal of Plant Research 113, 451–455.

    Google Scholar 

  • Saeki K, and Kouchi H. (2000) The lotus symbiont, Mesorhizobium loti, Molecular genetic techniques and application. Journal of Plant Research 113, 457–465.

    Google Scholar 

  • Tajima S, Takane K, Nomura M, and Kouchi H. (2000) Symbiotic nitrogen fixation at the late stage of nodule formation in Lotus japonicus and other legume plants. Journal of Plant Research 113, 467–473.

    Google Scholar 

  • Hayashi M, Imaizumi-Anraku H, Akao S, and Kawaguchi M. (2000) Nodule organogenesis in Lotus japonicus. Journal of Plant Research 113, 489–495.

    Google Scholar 

  • Kawasaki S, and Murakami Y. (2000) Genome analysis of Lotus japonicus. Journal of Plant Research 113, 497–506.

    Google Scholar 

  • Kawaguchi M. (2000) Lotus japonicus ‘Miyakojima’ MG-20, An early-flowering accession suitable for indoor handling. Journal of Plant Research 113, 507–509.

    Google Scholar 

  • Imaizumi-Anraku H, Kouchi H, Syono K, Akao S, and Kawaguchi M. (2000) Analysis of ENOD40 expression in alb1, a symbiotic mutant of Lotus japonicus that forms empty nodules with incompletely developed nodule vascular bundles. Molecular and General Genetics 264, 402–410.

    CAS  PubMed  Google Scholar 

  • Cote F, Roberts KA, and Hahn MG. (2000) Identification of high-affinity binding sites for the hepta-beta-glucoside elicitor in membranes of the model legumes Medicago truncatula and Lotus japonicus. Planta 211, 596–605.

    CAS  PubMed  Google Scholar 

  • Bonfante P, Genre A, Faccio A, Martini I, Schauser L, Stougaard J, Webb J, and Parniske M. (2000) The Lotus japonicus LjSym4 gene is required for the successful symbiotic infection of root epidermal cells. Molecular Plant-Microbe Interactions 13, 1109–1120.

    CAS  PubMed  Google Scholar 

  • Takane K, Tajima S, and Kouchi H. (2000) Structural and expression analysis of uricase mRNA from Lotus japonicus. Molecular Plant-Microbe Interactions 13, 1156–1160.

    CAS  PubMed  Google Scholar 

  • Asamizu E, Nakamura Y, Sato S, and Tabata S. (2000) Generation of 7137 non-redundant expressed sequence tags from a legume, Lotus japonicus. DNA Research 7, 127–130.

    PubMed  Google Scholar 

  • Endo M, Kokubun T, Takahata Y, Higashitani A, Tabata S, and Watanabe M. (2000) Analysis of expressed sequence tags of flower buds in Lotus japonicus. DNA Research 7, 213–216.

    Article  CAS  PubMed  Google Scholar 

  • Flemetakis E, Kavroulakis N, Quaedvlieg NEM, Spaink HP, Dimou M, Roussis A, and Katinakis P. (2000) Lotus japonicus contains two distinct ENOD40 genes that are expressed in symbiotic, nonsymbiotic, and embryonic tissues. Molecular Plant-Microbe Interactions 13, 987–994.

    CAS  PubMed  Google Scholar 

  • Wopereis J, Pajuelo E, Dazzo FB, Jiang QY, Gresshoff PM, de Bruijn FJ, Stougaard J, and Szczyglowski K. (2000) Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant Journal 23, 97–114.

    Article  CAS  PubMed  Google Scholar 

  • Nukui N, Ezura H, Yuhashi KI, Yasuta T, and Minamisawa K. (2000) Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant and Cell Physiology 41, 893–897.

    Article  CAS  PubMed  Google Scholar 

  • Senoo K, Solaiman MZ, Kawaguchi M, Imaizumi-Anraku H, Akao S, Tanaka A, and Obata H. (2000) Isolation of two different phenotypes of mycorrhizal mutants in the model legume plant Lotus japonicus after EMS-treatment. Plant and Cell Physiology 41, 726–732.

    CAS  PubMed  Google Scholar 

  • Bolte S, Schiene K, and Dietz KJ. (2000) Characterization of a small GTP-binding protein of the rab 5 family in Mesembryanthemum crystallinum with increased level of expression during early salt stress. Plant Molecular Biology 42, 923–936.

    Article  CAS  PubMed  Google Scholar 

  • Guenther JF, and Roberts DM. (2000) Water-selective and multifunctional aquaporins from Lotus japonicus nodules. Planta 210, 741–748.

    Article  CAS  PubMed  Google Scholar 

  • Webb KJ, Skot L, Nicholson MN, Jorgensen B, and Mizen S. (2000) Mesorhizobium loti increases root-specific expression of a calcium-binding protein homologue identified by promoter tagging in Lotus japonicus. Molecular Plant-Microbe Interactions 13, 606–616.

    CAS  PubMed  Google Scholar 

  • Bras CP, Jorda MA, Wijfjes AHM, Harteveld M, Stuurman N, Thomas-Oates JE, and Spaink HP. (2000) A Lotus japonicus nodulation system based on heterologous expression of the fucosyl transferase NodZ and the acetyl transferase NolL in Rhizobium leguminosarum. Molecular Plant-Microbe Interactions 13, 475–479.

    CAS  Google Scholar 

  • Clarkson DT, Carvajal M, Henzler T, Waterhouse RN, Smyth AJ, Cooke DT, and Steudle E. (2000) Root hydraulic conductance, diurnal aquaporin expression and the effects of nutrient stress. Journal of Experimental Botany 51, 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Henzler T, Waterhouse RN, Smyth AJ, Carvajal M, Cooke DT, Schaffner AR, Steudle E, and Clarkson DT. (1999) Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of Lotus japonicus. Planta 210, 50–60.

    Article  CAS  PubMed  Google Scholar 

  • Schauser L, Roussis A, Stiller J, and Stougaard J. (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402, 191–195.

    CAS  PubMed  Google Scholar 

  • Limami A, Phillipson B, Ameziane R, Pernollet N, Jiang QJ, Poy R, Deleens E, Chaumont-Bonnet M, Gresshof PM, and Hirel B. (1999) Does root glutamine synthetase control plant biomass production in Lotus japonicus L.? Planta 209, 495–502.

    Article  CAS  PubMed  Google Scholar 

  • Roberts NJ, Brigham J, Wu B, Murphy JB, Volpin H, Phillips DA, and Etzler ME. (1999) A Nod factor-binding lectin is a member of a distinct class of apyrases that may be unique to the legumes. Molecular and General Genetics 262, 261–267.

    CAS  PubMed  Google Scholar 

  • Hussain AKMA, Jiang QY, Broughton WJ, and Gresshoff PM. (1999) Lotus japonicus nodulates and fixes nitrogen with the broad host range Rhizobium sp NGR234. Plant and Cell Physiology 40, 894–899.

    CAS  Google Scholar 

  • Genschel U, Powell CA, Abell C, and Smith AG. (1999) The final step of pantothenate biosynthesis in higher plants, cloning and characterization of pantothenate synthetase from Lotus japonicus and Oryza sativum (rice). Biochemical Journal 341, 669–678.

    Article  CAS  PubMed  Google Scholar 

  • Stougaard J, Szczyglowski K, de Bruijn FJ, and Parniske M. (1999) Genetic nomenclature guidelines for the model legume Lotus japonicus. Trends in Plant Science 4, 300–301.

    Article  PubMed  Google Scholar 

  • Borg S, Podenphant L, Jensen TJ, and Poulsen C. (1999) Plant cell growth and differentiation may involve GAP regulation of Rac activity. FEBS Letters 453, 341–345.

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen JE, Gronlund M, Pallisgaard N, Larsen K, Marcker KA, and Jensen EO. (1999) A new class of plant homeobox genes is expressed in specific regions of determinate symbiotic root nodules. Plant Molecular Biology 40, 65–77.

    CAS  PubMed  Google Scholar 

  • Martirani L, Stiller J, Mirabella R, Alfano F, Lamberti A, Radutoiu SE, Iaccarino M, Gresshoff PM, and Chiurazzi M. (1999) T-DNA tagging of nodulation-and root-related genes in Lotus japonicus, Expression patterns and potential for promoter trapping and insertional mutagenesis. Molecular Plant-Microbe Interactions 12, 275–284.

    CAS  Google Scholar 

  • Kapranov P, Jensen TJ, Poulsen C, de Bruijn FJ, and Szczyglowski K. (1999) A protein phosphatase 2C gene, LjNPP2C1, from Lotus japonicus induced during root nodule development. Proceeding of the National Academy of Sciences of the United States of America 96, 1738–1743.

    CAS  Google Scholar 

  • Quaedvlieg NEM, Schlaman HRM, Admiraal PC, Wijting SE, Stougaard J, and Spaink HP. (1998) Fusions between green fluorescent protein and beta-glucuronidase as sensitive and vital bifunctional reporters in plants. Plant Molecular Biology 38, 861–873.

    Article  CAS  PubMed  Google Scholar 

  • Schauser L, Handberg K, Sandal N, Stiller J, Thykjaer T, Pajuelo E, Nielsen A, and Stougaard J. (1998) Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus. Molecular and General Genetics 259, 414–423.

    CAS  PubMed  Google Scholar 

  • Wegel E, Schauser L, Sandal N, Stougaard J, and Parniske M. (1998) Mycorrhiza mutants of Lotus japonicus define genetically independent steps during symbiotic infection. Molecular Plant-Microbe Interactions 11, 933–936.

    CAS  Google Scholar 

  • Szczyglowski K, Kapranov P, Hamburger D, and de Bruijn FJ. (1998) The Lotus japonicus LjNOD70 nodulin gene encodes a protein with similarities to transporters. Plant Molecular Biology 37, 651–661.

    Article  CAS  PubMed  Google Scholar 

  • Quaedvlieg NEM, Schlaman HRM, Admiraal PC, Wijting SE, Stougaard J, and Spaink P. (1998) Fusions between green fluorescent protein and beta-glucuronidase as sensitive and vital bifunctional reporters in plants. Plant Molecular Biology 37, 715–727.

    Article  CAS  PubMed  Google Scholar 

  • Szczyglowski K, Shaw RS, Wopereis J, Copeland S, Hamburger D, Kasiborski B, Dazzo FB, and de Bruijn FJ. (1998) Nodule organogenesis and symbiotic mutants of the model legume Lotus japonicus. Molecular Plant-Microbe Interactions 11, 684–697.

    CAS  Google Scholar 

  • Mikami K, Ichimura K, Iuch S, Yamaguchi-Shinozaki K, and Shinozaki K. (1997) Molecular characterization of a cDNA encoding a novel small GTP-binding protein from Arabidopsis thaliana. Biochimica et Biophysica Acta-Gene Structure and Expression 1354, 99–104.

    CAS  Google Scholar 

  • Thykjaer T, Finnemann J, Schauser L, Christense L, Poulsen C, and Stougaard J. (1997) Gene targeting approaches using positive-negative selection and large flanking regions. Plant Molecular Biology 35, 523–530.

    CAS  PubMed  Google Scholar 

  • Thykjaer T, Danielsen D, She Q, and Stougaard J. (1997) Organization and expression of genes in the genomic region surrounding the glutamine synthetase gene Gln1 from Lotus japonicus. Molecular & General Genetics 255, 628–636.

    CAS  Google Scholar 

  • Stiller J, Martirani L, Tuppale S, Chian RJ, Chiurazzi M, and Gresshoff PM. (1997) High frequency transformation and regeneration of transgenic plants in the model legume Lotus japonicus. Journal of Experimental Botany 48, 1357–1365.

    CAS  Google Scholar 

  • Szczyglowski K, Hamburger D, Kapranov P, and deBruijn FJ. (1997) Construction of a Lotus japonicus late nodulin expressed sequence tag library and identification of novel nodule-specific genes. Plant Physiology 114, 1335–1346.

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi-Anraku H, Kawaguchi M, Koiwa H, Akao S, and Syono K. (1997) Two ineffective-nodulating mutants of Lotus japonicus-Different phenotypes caused by the blockage of endocytotic bacterial release and nodule maturation. Plant and Cell Physiology 38, 871–881.

    CAS  Google Scholar 

  • Skot L, Gordon AJ, Timms E, James CL, Webb KJ, and Mizen S. (1997) Down-regulation of sucrose synthase expression and activity in transgenic hairy roots of Lotus japonicus. Symbiosis 22, 241–254.

    CAS  Google Scholar 

  • Skadhauge B, Gruber MY, Thomsen KK, and von Wettstein D. (1997) Leucocyanidin reductase activity and accumulation of proanthocyanidins in developing legume tissues. American Journal of Botany 84, 494–503.

    CAS  Google Scholar 

  • Kapranov P, deBruijn FJ, and Szczyglowski K. (1997) Novel, highly expressed late nodulin gene (LjNOD16) from Lotus japonicus. Plant Physiology 113, 1081–1090.

    Article  CAS  PubMed  Google Scholar 

  • Borg S, Brandstrup B, Jensen TJ, and Poulsen C. (1997) Identification of new protein species among 33 different small GTP-binding proteins encoded by cDNAs from Lotus japonicus, and expression of corresponding mRNAs in developing root nodules. Plant Journal 11, 237–250.

    Article  CAS  PubMed  Google Scholar 

  • Skot L, Minchin FR, Timms E, Fortune MT, Webb KJ, and Gordon AJ. (1996) Analysis of the two nodulins, sucrose synthase and ENOD2, in transgenic Lotus plants. Plant and Soil 186, 99–106.

    CAS  Google Scholar 

  • Jiang QY, and Gresshoff PM. (1997) Classical and molecular genetics of the model legume Lotus japonicus. Molecular Plant-Microbe Interactions 10, 59–68.

    CAS  PubMed  Google Scholar 

  • Tajima S, Takane K, Ohkawa K, Sugimoto A, and Okazaki K. (1996) Preparation of a monoclonal antibody against soybean nodule uricase (nod-35), and immunoblot analysis of the expression of nod-35 in tissues of various legumes. Plant and Cell Physiology 37, 1188–1192.

    CAS  PubMed  Google Scholar 

  • Pillai SV, Funke RP, and Gresshoff PM. (1996) Yeast and bacterial artificial chromosome (YAC and BAC) clones of the model legume Lotus japonicus. Symbiosis 21, 149–164.

    CAS  Google Scholar 

  • Grant WF, and Small E. (1996) The origin of the Lotus corniculatus (Fabaceae) complex, A synthesis of diverse evidence. Canadian Journal of Botany-Revue Canadienne de Botanique 74, 975–989.

    Google Scholar 

  • Kawaguchi M, Imaizumi-Anraku H, Fukai S, and Syono K. (1996) Unusual branching in the seedlings of Lotus japonicus-Gibberellins reveal the nitrogen-sensitive cell divisions within the pericycle on roots. Plant and Cell Physiology 37, 461–470.

    CAS  Google Scholar 

  • Waterhouse RN, Smyth AJ, Massonneau A, Prosser IM, and Clarkson DT. (1996) Molecular cloning and characterisation of asparagine synthetase from Lotus japonicus, Dynamics of asparagine synthesis in N-sufficient conditions. Plant Molecular Biology 30, 883–897.

    Article  CAS  PubMed  Google Scholar 

  • Oger P, Petit A, and Dessaux Y. (1996) A simple technique for direct transformation and regeneration of the diploid legume species Lotus japonicus. Plant Science 116, 159–168.

    Article  CAS  Google Scholar 

  • Stougaard, J and Beuselinck, PR. (1996) Registration of GIFU B-129-S9 Lotus japonicus germplasm. Crop Science 36, 476–476.

    Google Scholar 

  • Thykjaer T, Stiller J, Handberg K, Jones J, and Stougaard J. (1995) The maize transposable element Ac is mobile in the legume Lotus japonicus. Plant Molecular Biology 27, 981–993.

    Article  CAS  PubMed  Google Scholar 

  • Schauser L, Christensen L, Borg S, and Poulsen C (1995) PZF, A cDNA isolated from Lotus japonicus and soybean root-nodule libraries, encodes a new plant member of the ring-finger family of zinc-binding proteins. Plant Physiology 107, 1457–1458.

    Article  CAS  PubMed  Google Scholar 

  • Stougaard J. (1993) Substrate-dependent negative selection in plants using a bacterial cytosine deaminase gene. Plant Journal 3, 755–761.

    Article  CAS  Google Scholar 

  • Handberg K, and Stougaard J. (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant Journal 2, 487–496.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J Márquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Betti, M., Márquez, A.J. (2005). An update of work published on Lotus japonicus. In: Márquez, A.J. (eds) Lotus japonicus Handbook. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3735-X_36

Download citation

Publish with us

Policies and ethics